A033950 Refactorable numbers: number of divisors of k divides k. Also known as tau numbers.
1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, 104, 108, 128, 132, 136, 152, 156, 180, 184, 204, 225, 228, 232, 240, 248, 252, 276, 288, 296, 328, 344, 348, 360, 372, 376, 384, 396, 424, 441, 444, 448, 450, 468, 472, 480, 488, 492, 504, 516, 536
Offset: 1
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, pp. 102-103.
- New Scientist, Sep 05 1998, p. 17, para. 3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Kushagr Ahuja, Patrick Lei and Dylan Pentland, Tau ideals in number fields, PROMYS 2017.
- Alan Bundy, Simon Colton and Toby Walsh, HR - A system for Machine Discovery in Finite Algebras, ECAI 1998.
- Simon Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2 (1999), Article 99.1.2.
- Simon Colton, HR - Automatic Theory Formation in Pure Mathematics.
- Robert E. Kennedy and Curtis N. Cooper, Tau numbers, natural density and Hardy and Wright's Theorem 437, International Journal of Mathematics and Mathematical Sciences, Vol. 13, No. 2 (1990), pp. 383-386.
- Claudia Spiro, How often is the number of divisors of n a divisor of n?, J. Number Theory, Vol. 21, No. 1 (1985), pp. 81-100.
- Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8.
Crossrefs
Programs
-
Haskell
a033950 n = a033950_list !! (n-1) a033950_list = [x | x <- [1..], x `mod` a000005 x == 0] -- Reinhard Zumkeller, Dec 28 2011
-
Magma
[ n: n in [1..540] | n mod #Divisors(n) eq 0 ]; // Klaus Brockhaus, Apr 29 2009
-
Maple
with(numtheory): A033950 := proc(n) option remember: local k: if n=1 then return 1: else for k from procname(n-1)+1 do if type(k/tau(k), integer) then return k: end if: end do: end if: end proc: seq(A033950(n), n=1..56); # Nathaniel Johnston, May 04 2011
-
Mathematica
Do[If[IntegerQ[n/DivisorSigma[0, n]], Print[n]], {n, 1, 1000}] Select[ Range[559], Mod[ #, DivisorSigma[0, # ]] == 0 &] Select[Range[550], Divisible[ #, DivisorSigma[0, # ]]&] (* Waldemar Puszkarz, Jun 10 2016 *)
-
PARI
isA033950(n)=n%numdiv(n)==0 \\ Charles R Greathouse IV, Jun 10 2011
-
Python
from sympy import divisor_count print([n for n in range(1, 1001) if not n % divisor_count(n)]) # Indranil Ghosh, May 03 2017
Extensions
More terms from Erich Friedman
Comments