cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 200 results. Next

A036762 The integer values of x/d(x) in order of magnitude of x in A033950.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 3, 4, 5, 7, 5, 6, 8, 7, 11, 8, 13, 9, 16, 11, 17, 19, 13, 10, 23, 17, 25, 19, 29, 12, 31, 14, 23, 16, 37, 41, 43, 29, 15, 31, 47, 24, 22, 53, 49, 37, 32, 25, 26, 59, 20, 61, 41, 21, 43, 67, 28, 47, 71, 73, 25, 34, 125, 79, 53, 40, 83, 28, 38, 59
Offset: 1

Views

Author

Keywords

Examples

			If n=63, then x=625 and d(x) = 5 divides x. The quotient is 125 = a(63).
		

Crossrefs

Programs

  • Maple
    with(numtheory): A033950 := proc(n) option remember: local k: if(n=1)then return 1: else k:=procname(n-1)+1: do if(type(k/tau(k),integer))then return k: fi: k:=k+1: od: fi: end: A036762 := proc(n) return A033950(n)/tau(A033950(n)): end: seq(A036762(n),n=1..70); # Nathaniel Johnston, May 04 2011
  • Mathematica
    Select[Table[n/DivisorSigma[0, n], {n, 708}], IntegerQ] (* Michael De Vlieger, Jul 04 2016 *)

A336040 Characteristic function of refactorable numbers (A033950).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 07 2020

Keywords

Examples

			a(1) = 1 since d(1) = 1 and 1 divides 1.
a(2) = 1 since d(2) = 2 and 2 divides 2.
a(3) = 0 since d(3) = 2, but 2 does not divide 3.
		

Crossrefs

Cf. A000005, A033950, A054008, A336041 (inverse Möbius transform), A335182, A335665, A349322.

Programs

  • Mathematica
    a[n_] := Boole @ Divisible[n, DivisorSigma[0, n]]; Array[a, 100] (* Amiram Eldar, Jul 08 2020 *)
  • PARI
    a(n) = n%numdiv(n) == 0; \\ Michel Marcus, Jul 07 2020

Formula

a(n) = 1 - ceiling(n/d(n)) + floor(n/d(n)), where d(n) is the number of divisors of n (A000005).
a(n) = [A054008(n) == 0], where [ ] is the Iverson bracket. - Antti Karttunen, Nov 24 2021
a(p) = 0 for odd primes p. - Wesley Ivan Hurt, Nov 28 2021

A039819 Number of divisors of n-th refactorable number (A033950(n)).

Original entry on oeis.org

1, 2, 4, 3, 6, 6, 8, 9, 8, 8, 12, 12, 10, 12, 8, 12, 8, 12, 8, 12, 8, 8, 12, 18, 8, 12, 9, 12, 8, 20, 8, 18, 12, 18, 8, 8, 8, 12, 24, 12, 8, 16, 18, 8, 9, 12, 14, 18, 18, 8, 24, 8, 12, 24, 12, 8, 20, 12, 8, 8, 24, 18, 5, 8, 12, 16, 8, 24, 18, 12, 8, 30, 12, 8, 24, 12, 8, 8, 18, 12, 8, 24, 8
Offset: 1

Views

Author

Keywords

Comments

A number n is refactorable if the number of divisors of n divides n.

Crossrefs

Programs

  • Magma
    v:=[ n: n in [1..900] | n mod NumberOfDivisors(n) eq 0 ]; [NumberOfDivisors(v[i]): i in [1..#v]]; // Marius A. Burtea, Jul 02 2019
  • Mathematica
    fQ[n_] := Mod[n, DivisorSigma[0, n]] == 0; DivisorSigma[0, # ] & /@ Select[ Range[1000], fQ[ # ] &] (* Robert G. Wilson v *)

Formula

A033950(n)/a(n) = A036762(n).
a(n) = A000005(A033950(n)). - Omar E. Pol, Jan 17 2017

Extensions

More terms from Robert G. Wilson v, Oct 29 2005
Minor edits by Franklin T. Adams-Watters, Jan 17 2017

A047728 Intersection of A046985 and A033950: multiply perfect, refactorable numbers with integer average divisor dividing the number.

Original entry on oeis.org

1, 672, 30240, 23569920, 45532800, 14182439040, 153003540480, 403031236608, 13661860101120, 154345556085770649600, 143573364313605309726720, 352338107624535891640320, 680489641226538823680000, 34384125938411324962897920, 156036748944739017459105792, 3638193973609385308194865152
Offset: 1

Views

Author

Keywords

Comments

Colton proves that perfect numbers (A000396) cannot be refactorable.

Examples

			k = 45532800 is a term since s0 = d(k) = 384, s1 = sigma(k) = 571963392, and the four quotients s1/s0 = 474300, (k * s0)/s1 = 96, s1/k = 4 and k/s0 = 118580 are all integers.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n * d, s] && Divisible[s, d] && Divisible[n, d]]; Select[Range[31000], q] (* Amiram Eldar, May 09 2024 *)
  • PARI
    is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !((k * d) % s) && !(s % d) && !(k % d);} \\ Amiram Eldar, May 09 2024

Formula

Let s1 = sigma(k) = A000203(k) be the sum of divisors of k and s0 = d(k) = A000005(k) be the number of divisors of k. Then, k is a term if s1/s0, (k * s0)/s1, s1/k, and k/s0 are all integers.

Extensions

a(7)-a(13) from Donovan Johnson, Apr 09 2010
Edited and a(14)-a(16) added by Amiram Eldar, May 09 2024

A172398 Number of partitions of n into the sum of two refactorable numbers (A033950).

Original entry on oeis.org

0, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 1, 2, 0, 1, 1, 0, 0, 3, 1, 0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 1, 1, 0, 2, 1, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 20 2010

Keywords

Examples

			a(10)=2 because 10 = 1(refactorable) + 9(refactorable) = 2(refactorable) + 8(refactorable).
		

Crossrefs

Cf. A033950.

Programs

  • Maple
    with(numtheory);
    a:=n-> sum( ((1 + floor(i/tau(i)) - ceil(i/tau(i))) * (1 + floor((n-i)/tau(n-i)) - ceil((n-i)/tau(n-i))) ), i=1..floor(n/2));
    # alternative
    isA033950 := proc(n)
        if modp(n,numtheory[tau](n)) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    A172398 := proc(n)
        local a;
        a := 0 ;
        for i from 1 to n/2 do
            if isA033950(i) and isA033950(n-i) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jul 21 2015
  • Mathematica
    a[n_] := IntegerPartitions[n, {2}, Select[Range[n], Divisible[#, DivisorSigma[0, #]]&]] // Length;
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 04 2023 *)

Formula

a(n) = Sum_{i=1..floor(n/2)} ((1+floor(i/d(i)) - ceiling(i/d(i))) * (1 + floor((n-i)/d(n-i)) - ceiling((n-i)/d(n-i)))). - Wesley Ivan Hurt, Jan 12 2013

Extensions

Corrected by D. S. McNeil, Nov 20 2010

A036761 Number of refactorable integers (A033950) of binary order (A029837) n.

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 4, 8, 13, 22, 39, 77, 137, 254, 459, 889, 1665, 3175, 6041, 11619, 22319, 42979, 83123, 160649, 311826, 605225, 1176998, 2291702, 4466923, 8716126, 17023771, 33279942, 65109458, 127484313, 249783733, 489738130, 960801221, 1886039740
Offset: 0

Views

Author

Keywords

Comments

Since for any epsilon d(n) <= n^epsilon if n is large enough, a(n) does not grow very quickly.

Examples

			{1} has binary order 0, {2} has binary order 1, no term has binary order 2, {8} has binary order 3, {9,12} have binary order 4, {18,24} have binary order 5, ...
The 8 numbers, between 65 and 128 (with binary order 7) which are divided by d(x) (A000005) are 72,80,84,88,96,104,108,128, so a(7)=8.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A036761 := proc(n) local ct,k,lim: if(n=0)then return 1: else ct:=0: lim:=2^n: for k from 2^(n-1)+1 to lim do if(k mod tau(k) = 0)then ct:=ct+1: fi: od: return ct: fi: end: seq(A036761(n),n=0..10); # Nathaniel Johnston, May 04 2011
  • Mathematica
    Table[Count[Range[2^(n - 1) + 1, 2^(n)], k_ /; Divisible[k, DivisorSigma[0, k]]] + Boole[n == 0], {n, 0, 22}] (* Michael De Vlieger, May 20 2017 *)

Extensions

a(22)-a(37) from Donovan Johnson, Aug 29 2012

A047727 Average divisor is an integer (A003601) and the number is refactorable (A033950).

Original entry on oeis.org

1, 56, 60, 96, 132, 184, 204, 248, 276, 348, 376, 480, 492, 504, 564, 568, 612, 632, 636, 672, 708, 824, 852, 864, 996, 1016, 1056, 1068, 1208, 1212, 1248, 1284, 1336, 1356, 1520, 1528, 1572, 1592, 1632, 1644, 1656, 1784, 1788, 1824, 1908, 1912, 1980
Offset: 1

Views

Author

Keywords

Examples

			x = 56, sigma(x) = 120, number of divisors of x = 8. 120/8 and 56/8 are integers.
		

Crossrefs

Programs

  • Mathematica
    adiQ[n_]:=Module[{ds1=DivisorSigma[1,n],ds0=DivisorSigma[0,n]} ,Divisible[ ds1,ds0]&&Divisible[n,ds0]]; Select[Range[2000],adiQ] (* Harvey P. Dale, Apr 27 2012 *)
  • PARI
    isok(n) = my(d = numdiv(n)); !(n % d) && !(sigma(n) % d); \\ Michel Marcus, Oct 15 2016

Formula

Both sigma_1(x)/sigma_0(x) and x/sigma_0(x) are integers. - clarified by Harvey P. Dale, Apr 27 2012

A359964 Refactorable numbers (A033950) having more divisors than all smaller refactorable numbers.

Original entry on oeis.org

1, 2, 8, 12, 24, 36, 60, 180, 240, 360, 720, 1260, 1680, 3360, 5040, 10080, 15120, 20160, 25200, 30240, 55440, 100800, 110880, 221760, 277200, 443520, 665280, 720720, 1108800, 1441440, 2494800, 2882880, 3603600, 5765760, 8648640, 12972960, 14414400, 25945920, 28828800
Offset: 1

Views

Author

Amiram Eldar, Jan 20 2023

Keywords

Comments

The corresponding numbers of divisors are 1, 2, 4, 6, 8, 9, 12, 18, 20, 24, ... .
This sequence if infinite since there are refactorable numbers with arbitrarily large number of divisors. E.g., for any prime p, p^(p-1) is a refactorable number with p divisors.

Crossrefs

Subsequence of A033950.
Similar sequences: A002182, A335317, A356078, A359963.

Programs

  • Mathematica
    seq[nmax_] := Module[{s = {}, dm = 0, d}, Do[d = DivisorSigma[0, n]; If[d > dm && Divisible[n, d], dm = d; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[10^6]
  • PARI
    lista(nmax) = {my(dm = 0, d); for(n = 1, nmax, d = numdiv(n); if(d > dm && n%d == 0, dm = d; print1(n, ", "))); }

A235176 Numbers k such that the sum of the first k refactorable numbers (A033950) is also a refactorable number.

Original entry on oeis.org

1, 47, 125, 131, 185, 187, 189, 191, 198, 201, 204, 206, 256, 257, 262, 264, 268, 276, 283, 285, 294, 800, 809, 812, 818, 822, 824, 827, 829, 840, 844, 848, 1076, 1080, 1118, 1119, 1133, 1135, 1151, 1153, 1164, 1171, 1175, 1183, 1186, 1189, 1195, 1208, 1210
Offset: 1

Views

Author

Ivan N. Ianakiev, Jan 04 2014

Keywords

Examples

			The sum of the first 47 terms of A033950 equals 9120, which is A033950(616).
		

Crossrefs

Extensions

a(8)-a(49) from Giovanni Resta, Jan 04 2014

A341781 Refactorable numbers (or tau numbers, A033950) k such that k/tau(k) is even, where tau(k) = A000005(k).

Original entry on oeis.org

8, 12, 36, 72, 80, 96, 128, 180, 240, 252, 288, 384, 396, 448, 468, 480, 560, 612, 640, 672, 684, 720, 828, 864, 880, 896, 972, 1040, 1044, 1056, 1116, 1152, 1200, 1248, 1332, 1344, 1360, 1408, 1440, 1476, 1520, 1548, 1620, 1632, 1664, 1680, 1692, 1800, 1824
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2021

Keywords

Comments

Zelinsky (2002) called these numbers p-generators. He proved that these are the tau numbers k such that for any prime p, if p does not divide k then p*k is also a tau number. He used these numbers to prove that the number of tau numbers not exceeding m is > pi(m)/2 for all m > 7.42*10^13, where pi(m) = A000720(m).

Examples

			8 is a term since 8/tau(8) = 8/4 = 2 is even.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Divisible[n, (d = DivisorSigma[0, n])] && EvenQ[n/d]; Select[Range[2000], q]
  • PARI
    isok(k) = my(q=k/numdiv(k)); (denominator(q)==1) && ((q%2) == 0); \\ Michel Marcus, Feb 20 2021
Showing 1-10 of 200 results. Next