A034807 Triangle T(n,k) of coefficients of Lucas (or Cardan) polynomials.
2, 1, 1, 2, 1, 3, 1, 4, 2, 1, 5, 5, 1, 6, 9, 2, 1, 7, 14, 7, 1, 8, 20, 16, 2, 1, 9, 27, 30, 9, 1, 10, 35, 50, 25, 2, 1, 11, 44, 77, 55, 11, 1, 12, 54, 112, 105, 36, 2, 1, 13, 65, 156, 182, 91, 13, 1, 14, 77, 210, 294, 196, 49, 2, 1, 15, 90, 275, 450, 378, 140, 15, 1, 16, 104
Offset: 0
Examples
I have seen two versions of these polynomials: One version begins L_0 = 2, L_1 = 1, L_2 = 1 + 2*x, L_3 = 1 + 3*x, L_4 = 1 + 4*x + 2*x^2, L_5 = 1 + 5*x + 5*x^2, L_6 = 1 + 6*x + 9*x^2 + 2*x^3, L_7 = 1 + 7*x + 14*x^2 + 7*x^3, L_8 = 1 + 8*x + 20*x^2 + 16*x^3 + 2*x^4, L_9 = 1 + 9*x + 27*x^2 + 30*x^3 + 9*x^4, ... The other version (probably the more official one) begins L_0(x) = 2, L_1(x) = x, L_2(x) = 2 + x^2, L_3(x) = 3*x + x^3, L_4(x) = 2 + 4*x^2 + x^4, L_5(x) = 5*x + 5*x^3 + x^5, L_6(x) = 2 + 9*x^2 + 6*x^4 + x^6, L_7(x) = 7*x + 14*x^3 + 7*x^5 + x^7, L_8(x) = 2 + 16*x^2 + 20*x^4 + 8*x^6 + x^8, L_9(x) = 9*x + 30*x^3 + 27*x^5 + 9*x^7 + x^9. From _John Blythe Dobson_, Oct 11 2007: (Start) Triangle begins: 2; 1; 1, 2; 1, 3; 1, 4, 2; 1, 5, 5; 1, 6, 9, 2; 1, 7, 14, 7; 1, 8, 20, 16, 2; 1, 9, 27, 30, 9; 1, 10, 35, 50, 25, 2; 1, 11, 44, 77, 55, 11; 1, 12, 54, 112, 105, 36, 2; 1, 13, 65, 156, 182, 91, 13; 1, 14, 77, 210, 294, 196, 49, 2; 1, 15, 90, 275, 450, 378, 140, 15; (End) From _Peter Bala_, Mar 20 2025: (Start) Let S = x + y and M = -x*y. Then the triangle gives the coefficients when expressing the symmetric polynomial x^n + y^n as a polynomial in S and M. For example, x^2 + y^2 = S^2 + 2*M; x^3 + y^3 = S^3 + 3*S*M; x^4 + y^4 = S^4 + 4*(S^2)*M + 2*M^2; x^5 + y^5 = S^5 + 5*(S^3)*M + 5*S*M^2; x^6 + y^6 = S^6 + 6*(S^4)*M + 9*(S^2)*M^2 + 2*M^3. See Woko. In general x^n + y^n = 2*(-i)^n *(sqrt(M))^n * T(n, i*S/(2*sqrt(M))), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. (End)
References
- A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 148.
- C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
- Thomas Koshy, Fibonacci and Lucas Numbers with Applications. New York, etc.: John Wiley & Sons, 2001. (Chapter 13, "Pascal-like Triangles," is devoted to the present triangle.)
- The Royal Society Newton Tercentenary Celebrations, Cambridge Univ. Press, 1947.
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- Moussa Benoumhani, A Sequence of Binomial Coefficients Related to Lucas and Fibonacci Numbers, J. Integer Seqs., Vol. 6, 2003.
- Benjamin Braun and Liam Solus, r-stable hypersimplices, arXiv:1408.4713 [math.CO], 2014-2016; Journal of Combinatorial Theory, Series A 157 (2018): 349-388.
- Johann Cigler and Hans-Christian Herbig, Factorization of spread polynomials, arXiv:2412.18958 [math.NT], 2024. See p. 2.
- Tom Copeland, Addendum to Elliptic Lie Triad
- Pantelis A. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
- Pantelis A. Damianou and Charalampos A. Evripidou, Characteristic and Coxeter polynomials for affine Lie algebras, arXiv preprint arXiv:1409.3956 [math.RT], 2014.
- Gary Detlefs and Wolfdieter Lang, Improved Formula for the Multi-Section of the Linear Three-Term Rcurrence Sequence<, arXiv:2304.12937[nath.CO], 2023.
- Joseph Doolittle, Lukas Katthän, Benjamin Nill, and Francisco Santos, Empty simplices of large width, arXiv:2103.14925 [math.CO], 2021.
- Sergio Falcon, On the Lucas triangle and its relationship with the k-Lucas numbers, Journal of Mathematical and Computational Science, 2 (2012), No. 3, 425-434.
- E. J. Farrell, An introduction to matching polynomials, J. Combin. Theory B 27 (1) (1979), 75-86, Table 2.
- Heidi Goodson, An Identity for Vertically Aligned Entries in Pascal's Triangle, arXiv:1901.08653 [math.CO], 2019.
- Gábor Hetyei, Hurwitzian continued fractions containing a repeated constant and an arithmetic progression, arXiv preprint arXiv:1211.2494 [math.CO], 2012. - From _N. J. A. Sloane_, Jan 02 2013
- L. E. Jeffery, Unit-primitive matrices
- I. Kaplansky, Solution of the "probleme des menages", Bull. Amer. Math. Soc. 49, (1943). 784-785.
- J. Kappraff and G. Adamson, Polygons and Chaos, 5th Interdispl Symm. Congress and Exh. Jul 8-14, Sydney, 2001 - [with commercial pop-ups].
- Emrah Kilic and Elif Tan Kilic, Some subsequences of the generalized Fibonacci and Lucas sequences, Preprint, 2011.
- Feihu Liu, Ying Wang, Yingrui Zhang, and Zihao Zhang,Hankel Determinants for Convolution of Power Series: An Extension of Cigler's Results, arXiv:2503.17187 [math.CO], 2025. See p.5.
- Eric Marberg, On some actions of the 0-Hecke monoids of affine symmetric groups, arXiv:1709.07996 [math.CO], 2017.
- T. J. Osler, Cardan polynomials and the reduction of radicals, Math. Mag., 74 (No. 1, 2001), 26-32.
- Adityanarayanan Radhakrishnan, Liam Solus, and Caroline Uhler, Counting Markov equivalence classes for DAG models on trees, Discrete Applied Mathematics 244 (2018): 170-185.
- Lorenzo Venturello, Koszul Gorenstein algebras from Cohen-Macaulay simplicial complexes, arXiv:2106.05051 [math.AC], 2021.
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Lucas Polynomial
- Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
- Wikipedia, Dickson polynomial.
- Wikipedia, Metallic mean.
- Justin Eze Woko, A Pascal-like Triangle for alpha^n + beta^n, The Mathematical Gazette, Vol. 81, No. 490 (Mar., 1997), pp. 75-79.
Crossrefs
Programs
-
Maple
T:= proc(n,k) if n=0 and k=0 then 2 elif k>floor(n/2) then 0 else n*binomial(n-k,k)/(n-k) fi end: for n from 0 to 15 do seq(T(n,k), k=0..floor(n/2)) od; # yields sequence in triangular form # Emeric Deutsch, Dec 25 2004
-
Mathematica
t[0, 0] = 2; t[n_, k_] := Binomial[n-k, k] + Binomial[n-k-1, k-1]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Dec 30 2013 *) CoefficientList[Table[x^(n/2) LucasL[n, 1/Sqrt[x]], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *) Table[Select[Reverse[CoefficientList[LucasL[n, x], x]], 0 < # &], {n, 0, 16}] // Flatten (* Robert G. Wilson v, May 03 2017 *) CoefficientList[FunctionExpand @ Table[2 (-x)^(n/2) Cos[n ArcSec[2 Sqrt[-x]]], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *) CoefficientList[Table[2 (-x)^(n/2) ChebyshevT[n, 1/(2 Sqrt[-x])], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
-
PARI
{T(n, k) = if( k<0 || 2*k>n, 0, binomial(n-k, k) + binomial(n-k-1, k-1) + (n==0))}; /* Michael Somos, Jul 15 2003 */
Formula
Row sums = A000032. T(2n, n-1) = A000290(n), T(2n+1, n-1) = A000330(n), T(2n, n-2) = A002415(n). T(n, k) = A029635(n-k, k), if n>0. - Michael Somos, Apr 02 1999
Lucas polynomial coefficients: 1, -n, n*(n-3)/2!, -n*(n-4)*(n-5)/3!, n*(n-5)*(n-6)*(n-7)/4!, - n*(n-6)*(n-7)*(n-8)*(n-9)/5!, ... - Herb Conn and Gary W. Adamson, May 28 2003
G.f.: (2-x)/(1-x-x^2*y). - Vladeta Jovovic, May 31 2003
T(n, k) = T(n-1, k) + T(n-2, k-1), n>1. T(n, 0) = 1, n>0. T(n, k) = binomial(n-k, k) + binomial(n-k-1, k-1) = n*binomial(n-k-1, k-1)/k, 0 <= 2*k <= n except T(0, 0) = 2. - Michael Somos, Apr 02 1999
T(n,k) = (n*(n-1-k)!)/(k!*(n-2*k)!), n>0, k>=0. - Alexander Elkins (alexander_elkins(AT)hotmail.com), Jun 09 2007
O.g.f.: 2-(2xt+1)xt/(-t+xt+(xt)^2). (Cf. A113279.) - Tom Copeland, Nov 07 2015
T(n,k) = A011973(n-1,k) + A011973(n-3,k-1) = A011973(n,k) - A011973(n-4,k-2) except for T(0,0)=T(2,1)=2. - Xiangyu Chen, Dec 24 2020
L_n(x) = ((x+sqrt(x^2+4))/2)^n + (-((x+sqrt(x^2+4))/2))^(-n). See metallic means. - William Krier, Sep 01 2023
Extensions
Improved description, more terms, etc., from Michael Somos
Comments