A034827 a(n) = 2*binomial(n,4).
0, 0, 0, 0, 2, 10, 30, 70, 140, 252, 420, 660, 990, 1430, 2002, 2730, 3640, 4760, 6120, 7752, 9690, 11970, 14630, 17710, 21252, 25300, 29900, 35100, 40950, 47502, 54810, 62930, 71920, 81840, 92752, 104720, 117810, 132090, 147630, 164502, 182780
Offset: 0
References
- Charles Jordan, Calculus of Finite Differences, Chelsea, 1965, p. 449.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- M. Aganagic, A. Klemm and C. Vafa, Disk Instantons, Mirror Symmetry and the Duality Web, arXiv:hep-th/0105045, 2001.
- Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
- Elie Feder and David Garber, The Orchard crossing number of an abstract graph, arXiv:math/0303317 [math.CO], 2003-2009.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[2*Binomial(n,4): n in [0..40]]; // Vincenzo Librandi, Oct 20 2013
-
Maple
[seq(binomial(n,4)*2,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
-
Mathematica
CoefficientList[Series[2 x^4/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 20 2013 *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 2}, 50] (* Harvey P. Dale, Jun 09 2016 *) Table[2 Binomial[n, 4], {n, 0, 40}] (* Bruno Berselli, Oct 24 2016 *) 2 Binomial[Range[0, 20], 4] (* Eric W. Weisstein, Aug 10 2017 *)
-
PARI
a(n)=2*binomial(n,4) \\ Charles R Greathouse IV, Jun 23 2015
Formula
G.f.: 2*x^4/(1-x)^5. - Colin Barker, Feb 29 2012
a(n) = Sum_{k=1..n-3} ( Sum_{i=1..k} i*(2*k-n+4) ). - Wesley Ivan Hurt, Sep 26 2013
E.g.f.: x^4*exp(x)/12. - G. C. Greubel, Feb 23 2017
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=4} 1/a(n) = 2/3.
Sum_{n>=4} (-1)^n/a(n) = 16*log(2) - 32/3. (End)
Comments