A038772 Numbers not divisible by any of their digits.
23, 27, 29, 34, 37, 38, 43, 46, 47, 49, 53, 54, 56, 57, 58, 59, 67, 68, 69, 73, 74, 76, 78, 79, 83, 86, 87, 89, 94, 97, 98, 203, 207, 209, 223, 227, 229, 233, 239, 247, 249, 253, 257, 259, 263, 267, 269, 277, 283, 289, 293, 299, 307, 308, 323, 329, 334, 337, 338
Offset: 1
Examples
34 is divisible by neither 3 nor 4. 35 is excluded because 5 is a divisor of 35, but 37 is included because neither 3 nor 7 is a divisor of 37
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for 10-automatic sequences
Programs
-
Haskell
import Data.Char (digitToInt) a038772 n = a038772_list !! (n-1) a038772_list = filter p [1..] where p n = all (> 0) $ map ((mod n) . digitToInt) $ filter (> '0') $ show n -- Reinhard Zumkeller, Jun 19 2011
-
Magma
[k:k in [1..340]| forall{c:c in Set(Intseq(k)) diff {0}|k mod c ne 0}]; // Marius A. Burtea, Dec 22 2019
-
Mathematica
nddQ[n_]:=Module[{idn=DeleteCases[IntegerDigits[n],0]},And@@Table[ !Divisible[n, idn[[i]]],{i,Length[idn]}]]; Select[Range[350],nddQ] (* Harvey P. Dale, Nov 01 2011 *)
-
PARI
is(n)=my(v=vecsort(eval(Vec(Str(n))), , 8)); for(i=if(v[1], 1, 2), #v, if(n%v[i]==0, return(0))); 1 \\ Charles R Greathouse IV, Jul 22 2011
-
Python
def ok(n): return not any(n%int(d) == 0 for d in str(n) if d != '0') print(list(filter(ok, range(1, 339)))) # Michael S. Branicky, May 20 2021
Extensions
Edited by N. J. A. Sloane, Nov 17 2008 at the suggestion of R. J. Mathar
Comments