cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036289 a(n) = n*2^n.

Original entry on oeis.org

0, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768, 15569256448, 32212254720
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Right side of the binomial sum Sum_{i = 0..n} (n-2*i)^2 * binomial(n, i) = n*2^n. - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
Let W be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all elements x, y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y, or y is a proper subset of x and there are no z in P(A) such that y is a proper subset of z and z is a proper subset of x. Then a(n) = |W|. - Ross La Haye, Sep 26 2007
Partial sums give A036799. - Vladimir Joseph Stephan Orlovsky, Jul 09 2011
a(n) = n with the bits shifted to the left by n places (new bits on the right hand side are zeros). - Indranil Ghosh, Jan 05 2017
Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - N. J. A. Sloane, Feb 08 2017
Also the circumference of the n-cube connected cycle graph. - Eric W. Weisstein, Sep 03 2017
a(n) is also the number of derangements in S_{n+3} with a descent set of {i, i+1} such that i ranges from 1 to n-2. - Isabella Huang, Mar 17 2018
a(n-1) is also the number of multiplications required to compute the permanent of general n X n matrices using Glynn's formula (see Theorem 2.1 in Glynn). - Stefano Spezia, Oct 27 2021

References

  • Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.29)

Crossrefs

Equals 2*A001787. Equals A003261(n) + 1.

Programs

  • Haskell
    a036289 n = n * 2 ^ n
    a036289_list = zipWith (*) [0..] a000079_list
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    g:=1/(1-2*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)*n, n=0..34); # Zerinvary Lajos, Jan 11 2009
  • Mathematica
    Table[n*2^n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2010 *)
    LinearRecurrence[{4,-4},{0,2},40] (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    a(n)=n<Charles R Greathouse IV, Jun 15 2011
    
  • Python
    a=lambda n: n<Indranil Ghosh, Jan 05 2017

Formula

Main diagonal of array (A085454) defined by T(i, 1) = i, T(1, j) = 2j, T(i, j) = T(i-1, j) + T(i-1, j-1). - Benoit Cloitre, Aug 05 2003
Binomial transform of A005843, the even numbers. - Joshua Zucker, Jan 13 2006
G.f.: 2*x/(1-2*x)^2. - R. J. Mathar, Nov 21 2007
a(n) = A000079(n)*n. - Omar E. Pol, Dec 21 2008
E.g.f.: 2*x exp(2*x). - Geoffrey Critzer, Oct 03 2011
a(n) = A002064(n) - 1. - Reinhard Zumkeller, Mar 16 2013
From Vaclav Kotesovec, Feb 14 2015: (Start)
Sum_{n>=1} 1/a(n) = log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(3/2).
(End)