A036289 a(n) = n*2^n.
0, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768, 15569256448, 32212254720
Offset: 0
References
- Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.29)
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1000 (first 501 terms from T. D. Noe)
- C. Banderier and S. Schwer, Why Delannoy numbers?, arXiv:math/0411128 [math.CO], 2004.
- David G. Glynn, The permanent of a square matrix, European Journal of Combinatorics, Volume 31, Issue 7, 2010, pp. 1887-1891.
- A. F. Horadam, Oresme numbers, Fib. Quart., 12 (1974), 267-271.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Eric Weisstein's World of Mathematics, Cube-Connected Cycle Graph.
- Eric Weisstein's World of Mathematics, Graph Circumference.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
- Index entries for sequences related to Benford's law
Programs
-
Haskell
a036289 n = n * 2 ^ n a036289_list = zipWith (*) [0..] a000079_list -- Reinhard Zumkeller, Mar 05 2012
-
Maple
g:=1/(1-2*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)*n, n=0..34); # Zerinvary Lajos, Jan 11 2009
-
Mathematica
Table[n*2^n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2010 *) LinearRecurrence[{4,-4},{0,2},40] (* Harvey P. Dale, Mar 02 2018 *)
-
PARI
a(n)=n<
Charles R Greathouse IV, Jun 15 2011 -
Python
a=lambda n: n<
Indranil Ghosh, Jan 05 2017
Formula
Main diagonal of array (A085454) defined by T(i, 1) = i, T(1, j) = 2j, T(i, j) = T(i-1, j) + T(i-1, j-1). - Benoit Cloitre, Aug 05 2003
Binomial transform of A005843, the even numbers. - Joshua Zucker, Jan 13 2006
G.f.: 2*x/(1-2*x)^2. - R. J. Mathar, Nov 21 2007
a(n) = A000079(n)*n. - Omar E. Pol, Dec 21 2008
E.g.f.: 2*x exp(2*x). - Geoffrey Critzer, Oct 03 2011
a(n) = A002064(n) - 1. - Reinhard Zumkeller, Mar 16 2013
From Vaclav Kotesovec, Feb 14 2015: (Start)
Sum_{n>=1} 1/a(n) = log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(3/2).
(End)
Comments