A036563 a(n) = 2^n - 3.
-2, -1, 1, 5, 13, 29, 61, 125, 253, 509, 1021, 2045, 4093, 8189, 16381, 32765, 65533, 131069, 262141, 524285, 1048573, 2097149, 4194301, 8388605, 16777213, 33554429, 67108861, 134217725, 268435453, 536870909, 1073741821, 2147483645
Offset: 0
Examples
a(2) = 1; a(3) = 2 + 1 + 2 = 5; a(4) = 4 + 2 + 1 + 2 + 4 = 13; a(5) = 8 + 4 + 2 + 1 + 2 + 4 + 8 = 29; etc. - _Philippe Deléham_, Feb 24 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
- Yael Berstein and Shmuel Onn, The Graver complexity of integer programming, Annals of Combinatorics, Vol. 13, No. 3 (2009), pp. 289-296; arXiv preprint, arXiv:0709.1500 [math.CO], 2007.
- L' Education Mathématique, Problème 8907, 49e Annee, No 14, 15 Avril 1947, p. 113
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. [Annotated scanned copy]
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. Sequence is on page 267.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
GAP
List([0..40], n-> 2^n -3); # G. C. Greubel, Nov 18 2019
-
Magma
[2^n-3: n in [0..40]]; // Vincenzo Librandi, May 09 2011
-
Maple
A036563:=n->2^n-3; seq(A036563(n), n=0..40); # Wesley Ivan Hurt, Jun 26 2014
-
Mathematica
Table[2^n - 3, {n, 0, 40}] (* Wesley Ivan Hurt, Jun 26 2014 *) LinearRecurrence[{3,-2},{-2,-1},40] (* Harvey P. Dale, Sep 26 2018 *)
-
PARI
a(n)= 2^n-3 \\ Charles R Greathouse IV, Dec 22 2011
-
Python
def A036563(n): return (1<
Chai Wah Wu, Sep 27 2024 -
Sage
[gaussian_binomial(n,1,2)-2 for n in range(0,40)] # Zerinvary Lajos, May 31 2009
Formula
a(n) = 2*a(n-1) + 3.
The sequence 1, 5, 13, ... has a(n) = 4*2^n-3. These are the partial sums of A151821. - Paul Barry, Aug 25 2003
a(n) = A118654(n-3, 6), for n > 2. - N. J. A. Sloane, Sep 29 2006
Row sums of triangle A130459 starting (1, 5, 13, 29, 61, ...). - Gary W. Adamson, May 26 2007
Row sums of triangle A131112. - Gary W. Adamson, Jun 15 2007
Binomial transform of [1, 4, 4, 4, ...] = (1, 5, 13, 29, 61, ...). - Gary W. Adamson, Sep 20 2007
a(n) = 2*StirlingS2(n,2) - 1, for n > 0. - Ross La Haye, Jul 05 2008
a(n) = A000079(n) - 3. - Omar E. Pol, Dec 21 2008
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-2*x) - 3/(1-x).
E.g.f.: exp(2*x) - 3*exp(x). (End)
For n >= 3, a(n) = 2<+>n, where operation <+> is defined in A206853. - Vladimir Shevelev, Feb 17 2012
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1, a(0)=-2, a(1)=-1. - Philippe Deléham, Dec 23 2013
Sum_{n>=1} 1/a(n) = A331372. - Amiram Eldar, Nov 18 2020
Comments