A037270 a(n) = n^2*(n^2 + 1)/2.
0, 1, 10, 45, 136, 325, 666, 1225, 2080, 3321, 5050, 7381, 10440, 14365, 19306, 25425, 32896, 41905, 52650, 65341, 80200, 97461, 117370, 140185, 166176, 195625, 228826, 266085, 307720, 354061, 405450, 462241, 524800, 593505, 668746, 750925, 840456, 937765
Offset: 0
References
- C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 5.
- C. Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60(2001), 85-96.
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 55.
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
- T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
- R. A. Wilson, Cosmic Trigger, epilogue of S.-P. Sirag.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795, arXiv:math/0408230 [math.CO], 2004-2005.
- N. G de Bruijn, Some classes of integer-valued functions, Nederl. Akad. Wetensch. Proc, Ser. A, 58 (1955), 363-367. See page 363.
- Th. Gruner, A. Kerber, R. Laue, and M. Meringer, Mathematics for Combinatorial Chemistry, In: F. Keil, W. Mackens, H. Voß and J. Wether, Scientific Computing in Chemical Engineering II, Springer, 1999, 74-81.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
GAP
a:=List([0..30],n->n^2*(n^2+1)/2); # Muniru A Asiru, Mar 28 2018
-
Magma
[n^2*(n^2 + 1)/2: n in [0..30]] // Stefano Spezia, Jan 15 2019
-
Maple
seq(n^2*(n^2+1)/2,n=0..30); # Muniru A Asiru, Mar 28 2018
-
Mathematica
Table[ n^2*((n^2 + 1)/2), {n, 0, 30} ] Table[(1/8) Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}] (* Artur Jasinski, Feb 10 2010 *) LinearRecurrence[{5,-10,10,-5,1},{0,1,10,45,136},30] (* Harvey P. Dale, Aug 03 2014 *)
-
PARI
a(n)=binomial(n^2+1,2) \\ Charles R Greathouse IV, Apr 25 2012
-
Python
for n in range(0,30): print(n**2*(n**2+1)/2, end=', ') # Stefano Spezia, Jan 10 2019
Formula
a(n) = a(n-1) + n^3 + (n-1)^3.
a(n) = A000537(n)+A000537(n-1), i.e., square of sum of first n integers plus square of sum of first n-1 integers. - Henry Bottomley, Oct 15 2001
a(n) = Sum_{k=0..n^2} k. - William A. Tedeschi, Feb 27 2008
a(n) = (1/8)*sinh(2*arcsinh(n)). - Artur Jasinski, Feb 10 2010
G.f.: x*(1+x)*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Mar 22 2012
a(n) = a(n-1) + A005898(n-1). - Ivan N. Ianakiev, May 13 2012
a(n) = A000217(n^2). - J. M. Bergot, Jun 07 2012
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5) n>4, a(0)=0, a(1)=1, a(2)=10, a(3)=45, a(4)=136. - Yosu Yurramendi, Sep 02 2013
a(n) = T(T(n)) + T(T(n-1)) + T(T(n)-1) + T(T(n-1)-1), where T(n) = A000217(n). - Charlie Marion, Sep 10 2016
a(n) = t(n-3)*t(n)+t(n-1)*t(n+2), with t(n)=A000217(n). - J. M. Bergot, Apr 07 2018
From Robert A. Russell, Nov 14 2018: (Start)
G.f.: (Sum_{j=1..4} S2(4,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..2} S2(2,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: Sum_{k=1..4} A145882(4,k) * x^k / (1-x)^5.
E.g.f.: (Sum_{k=1..4} S2(4,k)*x^k + Sum_{k=1..2} S2(2,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>4, a(n) = Sum_{j=1..5} -binomial(j-6,j) * a(n-j). (End)
a(n) = n*A006003(n). - Kritsada Moomuang, Dec 16 2018
For n > 0, a(n) = Sum_{k=1..n} A317617(n,k). - Stefano Spezia, Jan 10 2019
Sum_{n>=1} 1/a(n) = 1 + Pi^2/3 - Pi*coth(Pi) = 1.13652003875929052467672874379... - Vaclav Kotesovec, Jan 21 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi*csch(Pi) + Pi^2/6 - 1. - Amiram Eldar, Nov 02 2021
Comments