cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037270 a(n) = n^2*(n^2 + 1)/2.

Original entry on oeis.org

0, 1, 10, 45, 136, 325, 666, 1225, 2080, 3321, 5050, 7381, 10440, 14365, 19306, 25425, 32896, 41905, 52650, 65341, 80200, 97461, 117370, 140185, 166176, 195625, 228826, 266085, 307720, 354061, 405450, 462241, 524800, 593505, 668746, 750925, 840456, 937765
Offset: 0

Views

Author

Aaron Gulliver (gulliver(AT)elec.canterbury.ac.nz)

Keywords

Comments

Sum of first n^2 positive integers.
Start from xanthene and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink below on chemistry. - Robert G. Wilson v, Aug 02 2002; Amarnath Murthy, Aug 01 2002
Sum of the next n multiples of n. - Amarnath Murthy, Aug 01 2002
The sum of the terms in an n X n spiral. These are also triangular numbers. - William A. Tedeschi, Feb 27 2008
Hypotenuse of Pythagorean triangles with smallest side a cube: A000578(n)^2 + A083374(n)^2 = a(n)^2. - Martin Renner, Nov 12 2011
For n>1, triangular numbers that can be represented as a sum of a square and a triangular number. For example, a(2)=10=4+6=9+1. - Ivan N. Ianakiev, Apr 24 2012
A037270 can be constructed in the following manner: Take A000217 and for every n not in A000290 delete the corresponding A000217(n). - Ivan N. Ianakiev, Apr 26 2012
Starting at a(1)=1 simply take 1*1=1, a(2)= 2*(2+3)=10, a(3)= 3*(4+5+6)=45, a(4)=4*(7+8+9+10) and so on. - J. M. Bergot, May 01 2015
Observation: The digital roots of the terms repeat in the sequence 1, 1, 9; e.g., the digital roots of 1, 10, 45, 136, 325, and 666 are 1, 1, 9, 1, 1, and 9. Verified for the first 10000 terms. - Rob Barton, Mar 28 2018
The above observation is easily explained and proved given that the digital root of a positive number equals the number modulo 9, and a(n + 9k) == a(n) (mod 9). - M. F. Hasler, Apr 05 2018
Number of unoriented rows of length 4 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=10, there are 4 achiral (AAAA, ABBA, BAAB, BBBB) and 6 chiral pairs (AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, BABB-BBAB). - Robert A. Russell, Nov 14 2018
For n > 0, a(2n+1) is the number of non-isomorphic 6C_m-snakes, where m = 2n+1 or m = 2n (for n>=2). A kC_n-snake is a connected graph in which the k>=2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path. - Christian Barrientos, May 15 2019
Number of achiral colorings of the edges of a tetrahedron with n available colors. - Robert A. Russell, Sep 07 2019

References

  • C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 5.
  • C. Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60(2001), 85-96.
  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 55.
  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
  • R. A. Wilson, Cosmic Trigger, epilogue of S.-P. Sirag.

Crossrefs

Cf. A000217, A236770 (see crossrefs).
Row 4 of A277504.
Cf. A000583 (oriented), A083374 (chiral), A000290 (achiral).
Cf. A317617.
Row 3 of A327086 (achiral simplex edge colorings).

Programs

  • GAP
    a:=List([0..30],n->n^2*(n^2+1)/2); # Muniru A Asiru, Mar 28 2018
    
  • Magma
    [n^2*(n^2 + 1)/2: n in [0..30]] // Stefano Spezia, Jan 15 2019
  • Maple
    seq(n^2*(n^2+1)/2,n=0..30); # Muniru A Asiru, Mar 28 2018
  • Mathematica
    Table[ n^2*((n^2 + 1)/2), {n, 0, 30} ]
    Table[(1/8) Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}] (* Artur Jasinski, Feb 10 2010 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,1,10,45,136},30] (* Harvey P. Dale, Aug 03 2014 *)
  • PARI
    a(n)=binomial(n^2+1,2) \\ Charles R Greathouse IV, Apr 25 2012
    
  • Python
    for n in range(0,30): print(n**2*(n**2+1)/2, end=', ') # Stefano Spezia, Jan 10 2019
    

Formula

a(n) = a(n-1) + n^3 + (n-1)^3.
a(n) = A000537(n)+A000537(n-1), i.e., square of sum of first n integers plus square of sum of first n-1 integers. - Henry Bottomley, Oct 15 2001
a(n) = Sum_{k=0..n^2} k. - William A. Tedeschi, Feb 27 2008
a(n) = (1/8)*sinh(2*arcsinh(n)). - Artur Jasinski, Feb 10 2010
G.f.: x*(1+x)*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Mar 22 2012
a(n) = a(n-1) + A005898(n-1). - Ivan N. Ianakiev, May 13 2012
a(n) = 2 * A000217(n-1) * A000217(n) + A000290(n). - Ivan N. Ianakiev, May 26 2012
a(n) = A000217(n^2). - J. M. Bergot, Jun 07 2012
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5) n>4, a(0)=0, a(1)=1, a(2)=10, a(3)=45, a(4)=136. - Yosu Yurramendi, Sep 02 2013
For n>0, a(n) = A000217(n)^2 + A000217(n-1)^2. - Richard R. Forberg, Dec 25 2013
a(n) = T(T(n)) + T(T(n-1)) + T(T(n)-1) + T(T(n-1)-1), where T(n) = A000217(n). - Charlie Marion, Sep 10 2016
a(n) = t(n-3)*t(n)+t(n-1)*t(n+2), with t(n)=A000217(n). - J. M. Bergot, Apr 07 2018
From Robert A. Russell, Nov 14 2018: (Start)
a(n) = (A000583(n) + A000290(n)) / 2 = (n^4 + n^2) / 2.
a(n) = A000583(n) - A083374(n) = A083374(n) + A000290(n).
G.f.: (Sum_{j=1..4} S2(4,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..2} S2(2,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: Sum_{k=1..4} A145882(4,k) * x^k / (1-x)^5.
E.g.f.: (Sum_{k=1..4} S2(4,k)*x^k + Sum_{k=1..2} S2(2,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>4, a(n) = Sum_{j=1..5} -binomial(j-6,j) * a(n-j). (End)
a(n) = n*A006003(n). - Kritsada Moomuang, Dec 16 2018
For n > 0, a(n) = Sum_{k=1..n} A317617(n,k). - Stefano Spezia, Jan 10 2019
Sum_{n>=1} 1/a(n) = 1 + Pi^2/3 - Pi*coth(Pi) = 1.13652003875929052467672874379... - Vaclav Kotesovec, Jan 21 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi*csch(Pi) + Pi^2/6 - 1. - Amiram Eldar, Nov 02 2021