cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A375533 a(n) = numerator of Sum_{i=1..n} 1/A038603(i).

Original entry on oeis.org

0, 1, 5, 31, 247, 5891, 175669, 6639823, 290694979, 13885515383, 746406329689, 44593096214321, 3020489689357037, 222690147603898211, 17752712881208877899, 1486130275559909484787, 133315968357656471537153, 13025132201814060676912631, 2913672358303309675918969343, 663425761972477930761347977351, 152383524508438692136746106396609
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2024

Keywords

Comments

Numerator of sum of reciprocals of primes with no digit "1".
Of interest because it appears that the value of Sum_{i=1..oo} 1/A038603(i) = lim_{i->oo} a(i)/A375534(i) is extremely difficult to compute - so difficult that its decimal expansion does not have an OEIS entry. (Compare A082830.)

Examples

			The first few sums are 0/1, 1/2, 5/6, 31/30, 247/210, 5891/4830, 175669/140070, 6639823/5182590,  ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Numerator[Sum[ 1/Part[ResourceFunction["OEISSequence"]["A038603"],i],{i,n}]]; Array[a,20] (* Stefano Spezia, Sep 06 2024 *)

Extensions

a(0) prepended by Alois P. Heinz, Oct 21 2024

A375534 a(n) = denominator of Sum_{i=1..n} 1/A038603(i).

Original entry on oeis.org

1, 2, 6, 30, 210, 4830, 140070, 5182590, 222851370, 10474014390, 555122762670, 32752242997530, 2194400280834510, 160191220500919230, 12655106419572619170, 1050373832824527391110, 93483271121382937808790, 9067877298774144967452630, 2022136637626634327741936490
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2024

Keywords

Comments

See A375533 (the numerators) for further information.

Examples

			The first few sums are 0/1, 1/2, 5/6, 31/30, 247/210, 5891/4830, 175669/140070, 6639823/5182590,  ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Denominator[Sum[ 1/Part[ResourceFunction["OEISSequence"]["A038603"],i],{i,n}]]; Array[a,18] (* Stefano Spezia, Sep 06 2024 *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 21 2024

A038618 Primes not containing the digit '0'.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Complement of A056709 with respect to primes (A000040). - Lekraj Beedassy, Jul 04 2010
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Subsequence of A000040 (primes), A052382 (zeroless numbers) and A195943.
Primes having no digit d = 0..9 are this sequence, A038603, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.

Programs

  • Haskell
    a038618 n = a038618_list !! (n-1)
    a038618_list = filter ((== 1) . a168046) a000040_list
    -- Reinhard Zumkeller, Apr 07 2014, Sep 27 2011
    
  • Magma
    [ p: p in PrimesUpTo(300) | not 0 in Intseq(p) ];  // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 0] == 0 &] (* Vincenzo Librandi, Aug 09 2011 *)
  • PARI
    is(n)=if(isprime(n),n=vecsort(eval(Vec(Str(n))),,8);n[1]>0) \\ Charles R Greathouse IV, Aug 09 2011
    
  • PARI
    lista(nn) = forprime (p=2, nn, if (vecmin(digits(p)), print1(p, ", "))); \\ Michel Marcus, Apr 06 2016
    
  • PARI
    next_A038618(n)=until(vecmin(digits(n=nextprime(next_A052382(n)))),);n \\ Cf. OEIS Wiki page (LINKS) for other programs. - M. F. Hasler, Jan 12 2020
    
  • Python
    from sympy import primerange
    def aupto(N): return [p for p in primerange(1, N+1) if '0' not in str(p)]
    print(aupto(300)) # Michael S. Branicky, Mar 11 2022

Formula

Intersection of A052382 (zeroless numbers) and A000040 (primes); A168046(a(n))*A010051(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009
a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

A038615 Primes not containing the digit '7'.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 23, 29, 31, 41, 43, 53, 59, 61, 83, 89, 101, 103, 109, 113, 131, 139, 149, 151, 163, 181, 191, 193, 199, 211, 223, 229, 233, 239, 241, 251, 263, 269, 281, 283, 293, 311, 313, 331, 349, 353, 359, 383, 389, 401, 409, 419, 421, 431, 433, 439
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A052419. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, A038614, this sequence, A038616, and A038617, respectively.

Programs

  • Magma
    [ p: p in PrimesUpTo(500) | not 7 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 7] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
  • PARI
    lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 7), print1(p, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    (A038615_upto(N)=select( is_A052419, primes([1,N])))(444) \\ i.e.: {is_A038615(n)=is_A052419(n)&&isprime(n)}; {is_A052419(n)=!setsearch(Set(digits(n)),7)}. - M. F. Hasler, Jan 11 2020

Formula

Intersection of A000040 (primes) and A052419 (numbers with no digit 7). - M. F. Hasler, Jan 11 2020
a(n) ~ n^(log 10/log 9) * log(n). - Charles R Greathouse IV, Aug 03 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011

A052383 Numbers without 1 as a digit.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 9, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Comments

For each k in {1, 2, ..., 29, 30, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43} there exists at least an m such that m^k is 1-less. If m^k is 1-less then (10*m)^k, (100*m)^k, (1000*m)^k, ... are also 1-less. Therefore for each of these numbers k there exist infinitely many k-th powers in this sequence. - Mohammed Yaseen, Apr 17 2023

Crossrefs

Cf. A004176, A004720, A011531 (complement), A038603 (subset of primes), A082830 (Kempner series), A248518, A248519.
Cf. A052382 (without 0), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).

Programs

  • Haskell
    a052383 = f . subtract 1 where
       f 0 = 0
       f v = 10 * f w + if r > 0 then r + 1 else 0  where (w, r) = divMod v 9
    -- Reinhard Zumkeller, Oct 07 2014
    
  • Magma
    [ n: n in [0..89] | not 1 in Intseq(n) ];  // Bruno Berselli, May 28 2011
    
  • Maple
    M:= 3: # to get all terms with up to M digits
    B:= {$2..9}: A:= B union {0}:
    for m from 1 to M do
    B:= map(b -> seq(10*b+j,j={0,$2..9}), B);
    A:= A union B;
    od:
    sort(convert(A,list)); # Robert Israel, Jan 11 2016
    # second program:
    A052383 := proc(n)
          option remember;
          if n = 1 then
            0;
        else
            for a from procname(n-1)+1 do
                if nops(convert(convert(a,base,10),set) intersect {1}) = 0 then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jul 31 2016
    # third Maple program:
    a:= proc(n) local l, m; l, m:= 0, n-1;
          while m>0 do l:= (d->
            `if`(d=0, 0, d+1))(irem(m, 9, 'm')), l
          od; parse(cat(l))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 01 2016
  • Mathematica
    ban1Q[n_] := FreeQ[IntegerDigits[n], 1] == True; Select[Range[0, 89], ban1Q[#] &] (* Jayanta Basu, May 17 2013 *)
    Select[Range[0, 99], DigitCount[#, 10, 1] == 0 &] (* Alonso del Arte, Jan 12 2020 *)
  • PARI
    a(n)=my(v=digits(n,9));for(i=1,#v,if(v[i],v[i]++));subst(Pol(v),'x,10) \\ Charles R Greathouse IV, Oct 04 2012
    
  • PARI
    apply( {A052383(n)=fromdigits(apply(d->d+!!d, digits(n-1, 9)))}, [1..99]) \\ Defines the function and computes it for indices 1..99 (check & illustration)
    select( {is_A052383(n)=!setsearch(Set(digits(n)), 1)}, [0..99]) \\ Define the characteristic function is_A; as illustration, select the terms in [0..99]
    next_A052383(n, d=digits(n+=1))={for(i=1, #d, d[i]==1&& return((1+n\d=10^(#d-i))*d)); n} \\ Successor function: efficiently skip to the next a(k) > n. Used in A038603.  - M. F. Hasler, Jan 11 2020
    
  • Python
    from itertools import count, islice, product
    def A052383(): # generator of terms
        yield 0
        for digits in count(1):
            for f in "23456789":
                for r in product("023456789", repeat=digits-1):
                    yield int(f+"".join(r))
    print(list(islice(A052383(), 72))) # Michael S. Branicky, Oct 15 2023
    
  • Python
    from gmpy2 import digits
    def A052383(n): return int(''.join(str(int(d)+(d!='0')) for d in digits(n-1,9))) # Chai Wah Wu, Jun 28 2025
  • Scala
    (0 to 99).filter(.toString.indexOf('1') == -1) // _Alonso del Arte, Jan 12 2020
    
  • sh
    seq 0 1000 | grep -v 1; # Joerg Arndt, May 29 2011
    

Formula

a(1) = 1, a(n + 1) = f(a(n) + 1, a(n) + 1) where f(x, y) = if x < 10 and x <> 1 then y else if x mod 10 = 1 then f(y + 1, y + 1) else f(floor(x/10), y). - Reinhard Zumkeller, Mar 02 2008
a(n) is the replacement of all nonzero digits d by d + 1 in the base-9 representation of n - 1. - Reinhard Zumkeller, Oct 07 2014
Sum_{k>1} 1/a(k) = A082830 = 16.176969... (Kempner series). - Bernard Schott, Jan 12 2020

Extensions

Offset changed by Reinhard Zumkeller, Oct 07 2014

A038611 Primes not containing the digit '3'.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 29, 41, 47, 59, 61, 67, 71, 79, 89, 97, 101, 107, 109, 127, 149, 151, 157, 167, 179, 181, 191, 197, 199, 211, 227, 229, 241, 251, 257, 269, 271, 277, 281, 401, 409, 419, 421, 449, 457, 461, 467, 479, 487, 491, 499, 509, 521, 541, 547, 557
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A052405. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Intersection of A000040 (primes) and A052405 (numbers with no digit 3).
Primes having no digit d = 0..9 are A038618, A038603, A038604, this sequence, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.

Programs

  • Magma
    [ p: p in PrimesUpTo(600) | not 3 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 3] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
  • PARI
    lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 3), print1(p, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    ( {A038611_upto(N,M=1)=select( is_A052405, primes([M,N]))} )(350)
    
  • PARI
    next_A038611(n)={until((n=nextprime(n+1))==n=next_A052405(n-1),);n}
    ( {A038611_vec(n,M=2)=M--;vector(n,i,M=next_A038611(M))} )(20, 1000)
    \\ Get 20 terms >= 1000. See also OEIS wiki page. - M. F. Hasler, Jan 14 2020
    
  • Python
    from sympy import isprime
    i=j=1
    while j<=5000:
        if isprime(i) and "3" not in str(i):
            print(str(j)+" "+str(i))
            j+=1
        i+=1 # Indranil Ghosh, Feb 07 2017

Formula

a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011

A038617 Primes not containing the digit '9'.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 83, 101, 103, 107, 113, 127, 131, 137, 151, 157, 163, 167, 173, 181, 211, 223, 227, 233, 241, 251, 257, 263, 271, 277, 281, 283, 307, 311, 313, 317, 331, 337, 347, 353, 367, 373, 383, 401, 421
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A007095. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Intersection of A000040 (primes) and A007095 (numbers with no digit 9).
Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and this sequence, respectively.
Primes with other restrictions on digits: A106116, A156756.

Programs

  • Magma
    [ p: p in PrimesUpTo(500) | not 9 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[1000]], DigitCount[ # ][[9]] == 0 &] (* Stefan Steinerberger, May 20 2006 *)
  • PARI
    lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 9), print1(p, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    lista(nn) = forprime (p=2, nn, if (vecmax(digits(p)) != 9, print1(p, ", "))); \\ Michel Marcus, Apr 06 2016
    
  • PARI
    next_A038617(n)=until((n=nextprime(n+1))==(n=next_A007095(n-1)), ); n \\ M. F. Hasler, Jan 14 2020
    
  • Python
    from sympy import isprime
    i = 1
    while i <= 300:
        if "9" not in str(i) and isprime(i):
            print(str(i), end=",")
        i += 1 # Indranil Ghosh, Feb 07 2017

Formula

a(n) ~ n^(log 10/log 9) * log(n). - Charles R Greathouse IV, Aug 03 2023

A038604 Primes not containing the digit '2'.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A052404. - Michel Marcus, Feb 21 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Subsequence of A065091 (odd primes).
Primes having no digit d = 0..9 are A038618, A038603, this sequence, A038611, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.

Programs

  • Magma
    [ p: p in PrimesUpTo(400) | not 2 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 2] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
  • PARI
    lista(nn, d=2) = {forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), d), print1(p, ", ")););} \\ Michel Marcus, Feb 21 2015
    
  • PARI
    select( {is_A038604(n)=is_A052404(n)&&isprime(n)}, [1..400]) \\ see Wiki for more
    {next_A038604(n)=until((n==nextprime(n+1))==n=next_A052404(n-1),);n} \\ M. F. Hasler, Jan 12 2020
    
  • Python
    from sympy import isprime, nextprime
    def is_A038604(n): return str(n).find('2')<0 and isprime(n)
    def next_A038604(n): # get smallest term > n
        while True:
            n = nextprime(n); s = str(n); t = s.find('2')
            if t < 0: return n
            t = 10**(len(s)-1-t); n += t - n%t
    def A038604_upto(stop=math.inf, start=3):
        while start < stop: yield start; start = next_A038604(start)
    list(A038604_upto(400))
    # M. F. Hasler, Jan 12 2020

Formula

Intersection of A000040 and A052404. - M. F. Hasler, Jan 11 2020
a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011

A038612 Primes not containing the digit '4'.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A052406. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Intersection of A000040 (primes) and A052406 (numbers without digit 4).
Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, this sequence, A038613, A038614, A038615, A038616, and A038617, respectively.

Programs

  • Magma
    [ p: p in PrimesUpTo(300) | not 4 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 4] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
  • PARI
    lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 4), print1(p, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    ( {A038612_upto(N)=select( is_A052406, primes([1, N]))} )(444) \\ or better:
    next_A038612(n)={until(isprime(n), n=next_A052406(nextprime(n+1)-1)); n}
    ( {A038612_vec(n,M=1)=M--;vector(n,i, n=next_A038612(if(i>1, n)))} )(20, 1000)
    \\ (See the OEIS wiki page for more.) - M. F. Hasler, Jan 12 2020

Formula

a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011

A038614 Primes not containing the digit '6'.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 271, 277, 281, 283, 293, 307, 311
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Subsequence of primes of A052414. - Michel Marcus, Feb 22 2015
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Intersection of A000040 (primes) and A052414 (numbers with no digit 6).
Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, this sequence, A038615, A038616, and A038617, respectively.

Programs

  • Magma
    [ p: p in PrimesUpTo(400) | not 6 in Intseq(p) ]; // Bruno Berselli, Aug 08 2011
    
  • Maple
    no6:= proc(n) option remember;
      n mod 10 <> 6 and procname(floor(n/10))
    end proc:
    no6(0):= true:
    select(no6 and isprime, [2,seq(i,i=3..1000,2)]); # Robert Israel, Mar 16 2017
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 6] == 0 &] (* Vincenzo Librandi, Aug 08 2011 *)
  • PARI
    lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 6), print1(p, ", "));); \\ Michel Marcus, Feb 22 2015
    
  • PARI
    select( {is_A038614(n)=is_A052414(n)&&isprime(n)}, [1..350]) \\ see A052414
    (A038614_upto(n)=select( is_A038614, primes([1,n])))(350) \\ needs the above
    next_A038614(n)={until(isprime(n), n=next_A052414(nextprime(n+1)-1));n}
    (A038614_vec(n)=vector(n,i,n=next_A038614(if(i>1,n))))(66) \\ M. F. Hasler, Jan 12 2020

Formula

Intersection of A000040 and A052414. - M. F. Hasler, Jan 12 2020
a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 07 2011
Showing 1-10 of 31 results. Next