A042963 Numbers congruent to 1 or 2 mod 4.
1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66, 69, 70, 73, 74, 77, 78, 81, 82, 85, 86, 89, 90, 93, 94, 97, 98, 101, 102, 105, 106, 109, 110, 113, 114, 117, 118, 121, 122, 125, 126, 129, 130, 133, 134, 137, 138
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
- Eric Weisstein's World of Mathematics, Black Bishop Graph.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
a042963 n = a042963_list !! (n-1) a042963_list = [x | x <- [0..], mod x 4 `elem` [1,2]] -- Reinhard Zumkeller, Feb 14 2012
-
Magma
[ n : n in [1..165] | n mod 4 eq 1 or n mod 4 eq 2 ]; // Vincenzo Librandi, Jan 25 2011
-
Maple
A046923:=n->(n mod 2) + 2n - 2; seq(A046923(n), n=1..100); # Wesley Ivan Hurt, Oct 10 2013
-
Mathematica
Select[Range[109], Or[Mod[#, 4] == 1, Mod[#, 4] == 2] &] (* Ant King, Nov 17 2010 *) Table[(4 n - 3 - (-1)^n)/2, {n, 20}] (* Eric W. Weisstein, Dec 01 2017 *) LinearRecurrence[{1, 1, -1}, {1, 2, 5}, 20] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[(1 + x + 2 x^2)/((-1 + x)^2 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
PARI
a(n)=2*n-1-(n-1)%2 \\ Jianing Song, Oct 06 2018; adapted to offset by Michel Marcus, Sep 09 2022
-
PARI
apply( A042963(n)=n*2-2+n%2, [1..99]) \\ M. F. Hasler, Oct 17 2022
Formula
a(n) = 1 + A042948(n-1). [Corrected by Jianing Song, Oct 06 2018]
From Michael Somos, Jan 12 2000: (Start)
G.f.: x*(1 + x + 2*x^2)/((1 - x)^2*(1 + x)).
a(n) = a(n-1) + 2 + (-1)^n, a(0) = 1. (End) [This uses offset 0. - Jianing Song, Oct 06 2018]
a(n) = Sum_{k=0..n} (A001045(k) mod 4). - Paul Barry, Mar 12 2004
A145768(a(n)) is odd. - Reinhard Zumkeller, Jun 05 2012
a(n) = A005843(n-1) + A059841(n-1). - Philippe Deléham, Mar 31 2009 [Corrected by Jianing Song, Oct 06 2018]
a(n) = 4*n - a(n-1) - 5 for n > 1. [Corrected by Jerzy R Borysowicz, Jun 09 2023]
From Ant King, Nov 17 2010: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = (4*n - 3 - (-1)^n)/2. (End)
a(n) = (n mod 2) + 2*n - 2. - Wesley Ivan Hurt, Oct 10 2013
A163575(a(n)) = n - 1. - Reinhard Zumkeller, Jul 22 2014
E.g.f.: 2 + (2*x - 1)*sinh(x) + 2*(x - 1)*cosh(x). - Ilya Gutkovskiy, Jun 30 2016
E.g.f.: 2 + (2*x - 1)*exp(x) - cosh(x). - David Lovler, Jul 19 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 + log(2)/4. - Amiram Eldar, Dec 05 2021
Extensions
Offset corrected by Reinhard Zumkeller, Feb 14 2012
More terms by David Lovler, Jul 19 2022
Comments