A045572 Numbers that are odd but not divisible by 5.
1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 93, 97, 99, 101, 103, 107, 109, 111, 113, 117, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 143, 147, 149, 151, 153
Offset: 1
Examples
a(18) = 10*floor(17/4) + 2*floor( (4*(17 mod 4) + 1)/3 ) + 1 = 10*4 + 2*floor( (4*(1)+1)/3 ) + 1 = 40 + 2*floor(5/3) + 1 = 40 + 2*1 + 1 = 43. G.f. = x + 3*x^2 + 7*x^3 + 9*x^4 + 11*x^5 + 13*x^6 + 17*x^7 + 19*x^8 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Programs
-
Haskell
a045572 n = a045572_list !! (n-1) a045572_list = filter ((/= 0) . (`mod` 5)) a005408_list -- Reinhard Zumkeller, Dec 10 2011
-
Magma
[ 2*n + 2*Floor((n-3)/4) + 1: n in [1..70] ]; // Vincenzo Librandi, Aug 01 2011
-
Maple
A045572:=n->2*n + 2*floor((n-3)/4) + 1; seq(A045572(n), n=1..50); # Wesley Ivan Hurt, Jun 14 2014
-
Mathematica
Flatten[Table[10n + {1, 3, 7, 9}, {n, 0, 19}]] (* Alonso del Arte, Jan 13 2012 *) Select[2Range@78 -1, Mod[#, 5] > 0 &] (* Robert G. Wilson v, Apr 02 2017 *) Map[(1/2*(5*# + Mod[3*# + 2, 4] - 4))&, Range[10^3]] (* Mikk Heidemaa, Nov 23 2017 *)
-
PARI
a(n)=10*(n>>2)+[-1,1,3,7][n%4+1] \\ Charles R Greathouse IV, Jul 31 2011
-
PARI
is(n)=gcd(n,10)==1 \\ Charles R Greathouse IV, Sep 05 2013
-
PARI
{a(n) = 2*n - 1 + (n+1) \ 4 * 2}; /* Michael Somos, Jun 15 2014 */
-
Python
def A045572(n): return 2*(n+(n+1)//4) - 1 # Chai Wah Wu, Jan 08 2022
Formula
a(n) = 10*floor((n-1)/4) + 2*floor( (4*((n-1) mod 4) + 1)/3 ) + 1; a(n) = a(n-1) + 2 + 2*floor(((x+6) mod 10)/9). - Carl R. White, Feb 06 2008
a(n) = 2*n + 2*floor((n-3)/4) + 1. - Kenneth Hammond (weregoose(AT)gmail.com), Mar 07 2008
a(n) = -1 + 2*n + 2*floor((n+1)/4). - Kenneth Hammond (weregoose(AT)gmail.com), Mar 25 2008
From R. J. Mathar, Sep 22 2009: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5).
G.f.: x*(1 + 2*x + 4*x^2 + 2*x^3 + x^4)/((1+x) * (x^2+1) * (x-1)^2). (End)
a(n) = (10*n + 2*(-1)^(n*(n+1)/2) - (-1)^n - 5)/4. - Bruno Berselli, Nov 06 2011
G.f.: x * (1 + 2*x + 4*x^2 + 2*x^3 + x^4) / ((1 - x) * (1 - x^4)). - Michael Somos, Jun 15 2014
a(1 - n) = -a(n) for all n in Z. - Michael Somos, Jun 15 2014
0 = (a(n) - 2*a(n+1) + a(n+2)) * (a(n) - 4*a(n+2) + 3*a(n+3)) for all n in Z. - Michael Somos, Jun 15 2014
From Mikk Heidemaa, Nov 22 2017: (Start)
a(n) = (1/2)*(5*n + ((3*n + 2) mod 4) - 4);
a(n) = (1/4)*((-1)^(n + 1) + 10*n + 2*cos((n*Pi)/2) - 2*sin((n*Pi)/2) - 5);
a(n) = (1/4)*((-1)^(1 + n) + (1 - i)*exp(-(1/2)*i*n*Pi) + (1 + i)*exp(i*n*Pi/2) + 10*n - 5) (for n > 0), where i is the imaginary unit. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(10-2*sqrt(5))*Pi/10. - Amiram Eldar, Dec 12 2021
E.g.f.: (2 + cos(x) + (5*x - 3)*cosh(x) - sin(x) + (5*x - 2)*sinh(x))/2. - Stefano Spezia, Dec 07 2022
Comments