A099679 Least m such that repunit R_m is a multiple of A045572(n) (i.e., odd numbers not divisible by 5).
1, 3, 6, 9, 2, 6, 16, 18, 6, 22, 27, 28, 15, 6, 3, 6, 5, 21, 46, 42, 48, 13, 18, 58, 60, 18, 33, 66, 35, 8, 6, 13, 81, 41, 84, 44, 6, 15, 96, 18, 4, 34, 53, 108, 3, 112, 18, 48, 22, 15, 42, 21, 130, 18, 8, 46, 138, 6, 42, 148, 75, 144, 78, 39, 66, 81, 166, 78, 18, 43, 174, 178
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Patrick de Geest, Repunits and their prime factors
- T. Granlund, Factors of 10^n - 1
- M. Kamada, Factorizations of 11...11(Repunits)
- Y. Koide, Factorization of Repunit Numbers
- P. Yiu, Factorization of Repunits R_n for n<=50, Appendix Chap. 18.5 pp. 173/360 in 'Recreational Mathematics'.
Programs
-
Mathematica
f[n_] := Block[{k = 1}, While[ Mod[(10^k - 1)/9, n] != 0, k++ ]; k]; f /@ Select[ 2Range[ 90] - 1, Mod[ #, 5] != 0 &] (* Robert G. Wilson v, Oct 27 2004 *)
-
PARI
A(n)={ \\ Least m such that n | R_m my(f=factor(n),s=1,t); for(i=1,#f[,1], if(f[i,1]==3, t=3 , t=Mod(10,9*f[i,1]); fordiv(f[i,1]-1,d, if(t^d==1,t=d;break) ) ); t*=f[i,1]^(f[i,2]-1); s=lcm(s,t) ); s }; a(n)=A(10*(n>>2)+[-1, 1, 3, 7][n%4+1]) \\ Least m such that A045572(n) | R_m \\ Charles R Greathouse IV, Jul 31 2011
Extensions
Corrected and extended by Robert G. Wilson v, Oct 27 2004
Comments