A045944 Rhombic matchstick numbers: a(n) = n*(3*n+2).
0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800, 901, 1008, 1121, 1240, 1365, 1496, 1633, 1776, 1925, 2080, 2241, 2408, 2581, 2760, 2945, 3136, 3333, 3536, 3745, 3960, 4181, 4408, 4641, 4880, 5125, 5376, 5633, 5896, 6165, 6440
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- M. Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Leo Tavares, Illustration: Square Stars
- Leo Tavares, Illustration: Split Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(3*n+2) : n in [0..100]]; // Wesley Ivan Hurt, Sep 24 2017
-
Mathematica
Table[n*(3n+2), {n,0,60}] (* Harvey P. Dale, May 05 2011 *) LinearRecurrence[{3,-3,1},{0,5,16},60] (* Harvey P. Dale, Jan 19 2016 *) CoefficientList[Series[x*(5 + x)/(1 - x)^3,{x, 0, 60}], x] (* Stefano Spezia, Sep 01 2018 *)
-
PARI
a(n)=n*(3*n+2) \\ Charles R Greathouse IV, Nov 20 2012
Formula
O.g.f.: x*(5+x)/(1-x)^3. - R. J. Mathar, Jan 07 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=5, a(2)=16. - Harvey P. Dale, May 06 2011
a(n) = a(n-1) + 6*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
For n > 0, a(n)^3 + (a(n)+1)^3 + ... + (a(n)+n)^3 + 2*A000217(n)^2 = (a(n) + n + 1)^3 + ... + (a(n) + 2n)^3; see also A033954. - Charlie Marion, Dec 08 2007
a(n) = Sum_{i=0..n-1} A016969(i) for n > 0. - Bruno Berselli, Jan 13 2011
a(n) = A174709(6*n+4). - Philippe Deléham, Mar 26 2013
a(n) = A001082(2*n). - Michael Turniansky, Aug 24 2013
Sum_{n>=1} 1/a(n) = (9 + sqrt(3)*Pi - 9*log(3))/12 = 0.3794906245574721941... . - Vaclav Kotesovec, Apr 27 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(12) - 3/4. - Amiram Eldar, Jul 03 2020
E.g.f.: exp(x)*x*(5 + 3*x). - Stefano Spezia, Jun 08 2021
From Leo Tavares, Oct 14 2021: (Start)
a(n) = A056109(n) - 1. (End)
From Leo Tavares, Oct 06 2022: (Start)
Comments