cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A045966 a(1)=3; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^e_i.

Original entry on oeis.org

3, 5, 7, 25, 11, 35, 13, 125, 49, 55, 17, 175, 19, 65, 77, 625, 23, 245, 29, 275, 91, 85, 31, 875, 121, 95, 343, 325, 37, 385, 41, 3125, 119, 115, 143, 1225, 43, 145, 133, 1375, 47, 455, 53, 425, 539, 155, 59, 4375, 169, 605, 161, 475, 61, 1715, 187, 1625, 203, 185, 67
Offset: 1

Views

Author

Keywords

Comments

If we had a(1) = 1 (instead of 3), then this would be fully multiplicative with a(prime(k)) = prime(k+2) (see A357852). - Antti Karttunen, Jan 10 2020

References

Crossrefs

See A027748, A124010 for factorization data for n.
Sequences with similar definitions: A045967, A045968, A045970, A126272.
A059896 is used to express relationship between terms of this sequence.
A357852 is a slightly better version. - N. J. A. Sloane, Oct 29 2022

Programs

  • Haskell
    a045966 1 = 3
    a045966 n = product $ zipWith (^)
                (map a101300 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jun 03 2013, Dec 23 2011
    
  • Mathematica
    a[1] = 3; a[n_] := With[{f = FactorInteger[n]}, Times @@ (Prime[PrimePi[f[[All, 1]]]+2]^f[[All, 2]])]; Array[a, 60] (* Jean-François Alcover, Jun 19 2015 *)
  • PARI
    A045966(n) = if(1==n,3,my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(1+nextprime(1+f[i, 1]))); factorback(f)); \\ Antti Karttunen, Jan 10 2020

Formula

From Peter Munn, Dec 27 2019, for n >= 2, k >= 2: (Start)
a(n) = A003961^2(n).
a(n^k) = a(n)^k.
a(A003961(n)) = A003961(a(n)).
a(A059896(n,k)) = A059896(a(n), a(k)).
(End)

Extensions

More terms from David W. Wilson

A045968 a(1)=5; for n >= 2, if n = Product p_i^e_i, then a(n) = Product p_{i+3}^e_i.

Original entry on oeis.org

5, 7, 11, 49, 13, 77, 17, 343, 121, 91, 19, 539, 23, 119, 143, 2401, 29, 847, 31, 637, 187, 133, 37, 3773, 169, 161, 1331, 833, 41, 1001, 43, 16807, 209, 203, 221, 5929, 47, 217, 253, 4459, 53, 1309, 59, 931, 1573, 259, 61, 26411, 289, 1183, 319, 1127, 67, 9317, 247
Offset: 1

Views

Author

Keywords

Examples

			If n = 9 = 3^2, then a(n) = 11^2 = 121 (since 11 is the third prime after 3).
		

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, 3]^e; a[1] = 5; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Extensions

More terms from David W. Wilson
Erroneous linear recurrence deleted by Harvey P. Dale, May 07 2018

A045970 a(1)=7; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+4}^e_i.

Original entry on oeis.org

7, 11, 13, 121, 17, 143, 19, 1331, 169, 187, 23, 1573, 29, 209, 221, 14641, 31, 1859, 37, 2057, 247, 253, 41, 17303, 289, 319, 2197, 2299, 43, 2431, 47, 161051, 299, 341, 323, 20449, 53, 407, 377, 22627, 59, 2717, 61, 2783, 2873, 451, 67, 190333, 361, 3179, 403
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, 4]^e; a[1] = 7; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Extensions

More terms from David W. Wilson

A045973 a(1)=10; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^e_i * Product p_{i+3}^e_i.

Original entry on oeis.org

10, 21, 55, 441, 91, 1155, 187, 9261, 3025, 1911, 247, 24255, 391, 3927, 5005, 194481, 551, 63525, 713, 40131, 10285, 5187, 1073, 509355, 8281, 8211, 166375, 82467, 1271, 105105, 1591, 4084101, 13585, 11571, 17017, 1334025, 1927, 14973, 21505, 842751
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e * NextPrime[p, 3]^e; a[1] = 10; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Formula

Sum_{n>=1} 1/a(n) = -9/10 + Product_{k>=1} (1+1/(prime(k)*prime(k+4)-1)) = 0.2602421684... . - Amiram Eldar, Sep 19 2023

Extensions

More terms from David W. Wilson

A304412 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)*(k_j + 1)).

Original entry on oeis.org

1, 6, 8, 9, 12, 48, 16, 12, 12, 72, 24, 72, 28, 96, 96, 15, 36, 72, 40, 108, 128, 144, 48, 96, 18, 168, 16, 144, 60, 576, 64, 18, 192, 216, 192, 108, 76, 240, 224, 144, 84, 768, 88, 216, 144, 288, 96, 120, 24, 108, 288, 252, 108, 96, 288, 192, 320, 360, 120, 864, 124, 384, 192, 21, 336, 1152, 136, 324
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(36) = a(2^2*3^2) = (2 + 1)*(2 + 1) * (3 + 1)*(2 + 1) = 108.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1) (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 68}]
    Table[DivisorSigma[0, n] Total[Select[Divisors[n], SquareFreeQ]], {n, 68}]
  • PARI
    a(n)={numdiv(n)*sumdiv(n, d, moebius(d)^2*d)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*A048250(n) = A000005(n)*A000203(A007947(n)).
a(p^k) = (p + 1)*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*Product_{p|n} (p + 1) if n is a squarefree (A005117), where omega() = A001221.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^(s-1) - 1/p^(2*s-1)). - Amiram Eldar, Sep 17 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Let f(s) = Product_{p prime} (p^s-p)^2 * (p^(2*s)+2*p^(s+1)-p) / (p^(2*s) * (p^s-1)^2).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = A065463 = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442200999165592736603350326637210188586431417098049414226842591...,
f'(2) = f(2) * Sum_{p prime} 2*(2*p^2-1)*log(p) / ((p^2-1)*(p^2+p-1)) = f(2) * 1.799151495460164053607059266860868724519705035904425832307664926571...
and gamma is the Euler-Mascheroni constant A001620. (End)

A045969 a(1)=6; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+1}^e_i * Product p_{i+2}^e_i.

Original entry on oeis.org

6, 15, 35, 225, 77, 525, 143, 3375, 1225, 1155, 221, 7875, 323, 2145, 2695, 50625, 437, 18375, 667, 17325, 5005, 3315, 899, 118125, 5929, 4845, 42875, 32175, 1147, 40425, 1517, 759375, 7735, 6555, 11011, 275625, 1763, 10005, 11305, 259875, 2021, 75075
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (NextPrime[p] * NextPrime[p, 2])^e; a[1] = 6; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Formula

Sum_{n>=1} 1/a(n) = -5/6 + Product_{k>=2} (1+1/(prime(k)*prime(k+1)-1)) = 0.31383788... . - Amiram Eldar, Sep 19 2023

Extensions

More terms from David W. Wilson

A045971 a(1)=8; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^{e_i+2}.

Original entry on oeis.org

8, 27, 125, 81, 343, 3375, 1331, 243, 625, 9261, 2197, 10125, 4913, 35937, 42875, 729, 6859, 16875, 12167, 27783, 166375, 59319, 24389, 30375, 2401, 132651, 3125, 107811, 29791, 1157625, 50653, 2187, 274625, 185193, 456533, 50625, 68921, 328509, 614125
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^(e + 2); a[1] = 8; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Formula

Sum_{n>=1} 1/a(n) = (4/5) * A065483 - 7/8 = 0.196827322859... . - Amiram Eldar, Sep 19 2023

Extensions

More terms from David W. Wilson

A045972 a(1)=9; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^{e_i+1}.

Original entry on oeis.org

9, 25, 49, 125, 121, 1225, 169, 625, 343, 3025, 289, 6125, 361, 4225, 5929, 3125, 529, 8575, 841, 15125, 8281, 7225, 961, 30625, 1331, 9025, 2401, 21125, 1369, 148225, 1681, 15625, 14161, 13225, 20449, 42875, 1849, 21025, 17689, 75625, 2209, 207025
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, 2]^(e + 1); a[1] = 9; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Formula

Sum_{n>=1} 1/a(n) = (4/7) * (zeta(2)*zeta(3)/zeta(6)) - 8/9 = 0.221737646437... . - Amiram Eldar, Sep 19 2023

Extensions

More terms from David W. Wilson

A126272 a(1)=27; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+2}^{e_i+2}.

Original entry on oeis.org

27, 125, 343, 625, 1331, 42875, 2197, 3125, 2401, 166375, 4913, 214375, 6859, 274625, 456533, 15625, 12167, 300125, 24389, 831875, 753571, 614125, 29791, 1071875, 14641, 857375, 16807, 1373125, 50653, 57066625, 68921, 78125, 1685159
Offset: 1

Views

Author

Jonathan Vos Post, Mar 09 2007

Keywords

Comments

Analog of A045967 a(1)=4; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+1}^{e_i+1}. In a sense, n is the zeroth sequence in a family of sequences, A045967 is the first sequence in a family of sequences and a(n) is the second sequence in a family of sequences.
If we had a(1) = 1 (instead of 4), then this would be multiplicative and a permutation of A353502. - Amiram Eldar, Aug 11 2022

Crossrefs

Programs

  • Maple
    A126272 := proc(n) local pf,i,p,e,resul ; if n = 1 then 27 ; else pf := ifactors(n)[2] ; resul := 1 ; for i from 1 to nops(pf) do p := op(1,op(i,pf)) ; e := op(2,op(i,pf)) ; resul := resul * nextprime(nextprime(p))^(e+2) ; od ; resul ; fi ; end: for n from 1 to 40 do printf("%d, ",A126272(n)) ; od ; # R. J. Mathar, Apr 20 2007
  • Mathematica
    f[p_, e_] := NextPrime[p, 2]^(e + 2); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Sum_{n>=1} 1/a(n) = (72/95)*A065483 - 26/27. - Amiram Eldar, Aug 11 2022

Extensions

More terms from R. J. Mathar, Apr 20 2007

A328915 If n = Product (p_j^k_j) then a(n) = Product (nextprime(p_j)), where nextprime = A151800.

Original entry on oeis.org

1, 3, 5, 3, 7, 15, 11, 3, 5, 21, 13, 15, 17, 33, 35, 3, 19, 15, 23, 21, 55, 39, 29, 15, 7, 51, 5, 33, 31, 105, 37, 3, 65, 57, 77, 15, 41, 69, 85, 21, 43, 165, 47, 39, 35, 87, 53, 15, 11, 21, 95, 51, 59, 15, 91, 33, 115, 93, 61, 105, 67, 111, 55, 3, 119, 195, 71, 57, 145, 231
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 30 2019

Keywords

Comments

All terms are odd.

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2) * prime(3) = 3 * 5 = 15.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(nextprime(i[1]), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 30 2019
  • Mathematica
    a[1] = 1; a[n_] := Times @@ (NextPrime[#[[1]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 70}]
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, nextprime(f[k,1]+1)); \\ Michel Marcus, Oct 30 2019

Formula

If n = Product (p_j^k_j) then a(n) = Product (prime(pi(p_j) + 1)), where pi = A000720.
a(n) = A007947(A003961(n)).
Showing 1-10 of 11 results. Next