A045991 a(n) = n^3 - n^2.
0, 0, 4, 18, 48, 100, 180, 294, 448, 648, 900, 1210, 1584, 2028, 2548, 3150, 3840, 4624, 5508, 6498, 7600, 8820, 10164, 11638, 13248, 15000, 16900, 18954, 21168, 23548, 26100, 28830, 31744, 34848, 38148, 41650, 45360, 49284, 53428, 57798, 62400, 67240, 72324
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- R. J. Mathar, On the Diophantine equation (X-Y)^m-XY=0.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- J.S. Seneschal, Oblong cuboid illustration.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, Rook Graph.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n^3-n^2: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
Maple
A045991:=n->n^3 - n^2: seq(A045991(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Mathematica
Table[n^3 - n^2, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *) Table[4 Binomial[n, 2] + 6 Binomial[n, 3], {n, 0, 50}] (* Robert G. Wilson v, Mar 25 2012 *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 18, 48}, 20] (* Eric W. Weisstein, Jun 20 2017 *)
-
PARI
a(n)=n^2*(n-1) \\ Charles R Greathouse IV, Jul 17 2011
-
Sage
[n^2*(n-1) for n in range(0, 40)] # Zerinvary Lajos, Dec 03 2009
Formula
G.f.: 2*x^2*(x+2)/(-1+x)^4 = 6/(-1+x)^4+10/(-1+x)^2+14/(-1+x)^3+2/(-1+x). - R. J. Mathar, Nov 19 2007
a(n) = floor(n^5/(n^2+n+1)). - Gary Detlefs, Feb 10 2010
a(n) = 4*binomial(n,2) + 6*binomial(n,3). - Gary Detlefs, Mar 25 2012
a(n+1) = 2*A006002(n). - R. J. Mathar, Oct 31 2012
From Wesley Ivan Hurt, May 19 2015: (Start)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).
a(n) = Sum_{k=0..n-1} Sum_{i=n-k-1..n+k-1} i. (End)
Sum_{n>=2} 1/a(n) = 2 - Pi^2/6. - Daniel Suteu, Feb 06 2017
Sum_{n>=2} (-1)^n/a(n) = Pi^2/12 + 2*log(2) - 2. - Amiram Eldar, Jul 05 2020
E.g.f.: exp(x)*x^2*(2 + x). - Stefano Spezia, May 20 2021
Product_{n>=2} (1 - 1/a(n)) = A146485. - Amiram Eldar, Nov 22 2022
From J.S. Seneschal, Jun 21 2024: (Start)
a(n) = (n-1)*A000290(n).
a(n) = n*A002378(n-1).
Comments