cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A046409 Palindromes with exactly 3 distinct palindromic prime factors.

Original entry on oeis.org

66, 606, 2222, 2882, 3333, 5555, 6886, 7777, 26462, 39693, 145541, 167761, 226622, 248842, 339933, 347743, 662266, 664466, 668866, 682286, 993399, 996699, 2080802, 2284822, 6080806, 6264626, 9396939, 11444411, 11666611, 11777711
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

A046393 Palindromes with exactly 3 distinct prime factors.

Original entry on oeis.org

66, 222, 282, 434, 474, 494, 555, 595, 606, 646, 777, 969, 1001, 1221, 1551, 1771, 2222, 2882, 3333, 3553, 4334, 4994, 5335, 5555, 5665, 5885, 5995, 6226, 6446, 6886, 7337, 7557, 7667, 7777, 7887, 8338, 8558, 8998, 9339, 9669, 9779, 9889, 11211
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

The terms must have only three distinct prime factors even when counted with multiplicity. For example, 252 is not a term even though (1) it is a palindrome and (2) only three distinct primes occur when it is factored, because 252 = 2*2*3*3*7. - Harvey P. Dale, Aug 29 2016

Crossrefs

Programs

  • Mathematica
    Select[Range[12000],#==IntegerReverse[#]&&PrimeNu[#]==PrimeOmega[#]==3&] (* Harvey P. Dale, Aug 29 2016 *)

A046377 Palindromes with exactly 3 palindromic prime factors (counted with multiplicity).

Original entry on oeis.org

8, 44, 66, 99, 242, 343, 363, 404, 606, 909, 1331, 2222, 2882, 3333, 5555, 6886, 7777, 12221, 15851, 20402, 26462, 30603, 37873, 39693, 112211, 145541, 167761, 226622, 248842, 339933, 347743, 662266, 664466, 668866, 682286, 993399, 996699, 1030301, 1246421
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			The palindrome 996699 is a term since it has 3 factors 3 11 30203, all palindromic.
		

Crossrefs

Extensions

More terms from Lars Blomberg, Nov 06 2015

A324988 Palindromes whose number of divisors is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 262, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 424, 434, 454, 474, 484, 494, 505, 515, 535, 545
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2019

Keywords

Comments

Numbers m such that m and A000005(m) = tau(m) are both in A002113.

Examples

			Number of divisors of palindrome number 22 with divisors 1, 2, 11 and 22 is 4 (palindrome number).
		

Crossrefs

Similar sequences for functions sigma(m) and pod(m): A028986, A324989.
Includes A002385, A046328 and A046329.

Programs

  • Magma
    [n: n in [1..1000] | Intseq(n, 10) eq Reverse(Intseq(n, 10)) and Intseq(NumberOfDivisors(n), 10) eq Reverse(Intseq(NumberOfDivisors(n), 10))]
    
  • Maple
    ispali:= proc(n) local L; L:= convert(n,base,10); L = ListTools:-Reverse(L) end proc:
    select(t -> ispali(t) and ispali(numtheory:-tau(t)), [$1..10000]); # Robert Israel, Mar 26 2019
  • Mathematica
    Select[Range@ 600, And[PalindromeQ@ #, PalindromeQ@ DivisorSigma[0, #]] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    ispal(n) = my(d=digits(n)); Vecrev(d) == d;
    isok(n) = ispal(n) && ispal(numdiv(n)); \\ Michel Marcus, Mar 23 2019

A366430 Triprimes whose reversal is also a triprime.

Original entry on oeis.org

8, 44, 66, 99, 117, 147, 165, 171, 212, 222, 242, 244, 246, 282, 285, 286, 290, 292, 333, 338, 343, 363, 366, 369, 404, 406, 418, 425, 434, 435, 438, 442, 474, 475, 494, 498, 506, 507, 508, 524, 534, 539, 548, 555, 561, 574, 575, 582, 595, 604, 605, 606, 609, 628, 642, 646, 663, 670, 682, 705
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Nov 06 2023

Keywords

Examples

			a(5) = 117 is a term because 117 = 3^2 * 13 has 3 prime factors, counted with multiplicity, and so does its reversal 711 = 3^2 * 79.
		

Crossrefs

Cf. A014612, A085751. Contains A046329. Includes 10*k for k in A367151.

Programs

  • Maple
    rev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    select(t -> numtheory:-bigomega(t) = 3 and numtheory:-bigomega(rev(t))=3, [$1..10000]);
  • Mathematica
    Select[Range[710], PrimeOmega[#]==3&&PrimeOmega[FromDigits[Reverse[IntegerDigits[#]]]]==3&] (* Stefano Spezia, Nov 07 2023 *)
  • Python
    from sympy import factorint
    def tp(n): return sum(factorint(n).values()) == 3
    def ok(n): return tp(n) and tp(int(str(n)[::-1]))
    print([k for k in range(10**3) if ok(k)]) # Michael S. Branicky, Nov 21 2023

A348050 Palindromes setting a new record of their number of prime divisors A001222.

Original entry on oeis.org

1, 2, 4, 8, 88, 252, 2112, 4224, 8448, 44544, 48384, 405504, 4091904, 405909504, 677707776, 4285005824, 21128282112, 29142024192, 4815463645184, 445488555884544, 27874867776847872, 40539458585493504, 63556806860865536, 840261068860162048, 4870324782874230784
Offset: 1

Views

Author

Hugo Pfoertner, Oct 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    m=0;lst=Union@Flatten[Table[{FromDigits@Join[s=IntegerDigits@n,Reverse@s],FromDigits@Join[w=IntegerDigits@n,Rest@Reverse@w]},{n,10^5}]];Do[t=PrimeOmega@lst[[n]];If[t>m,Print@lst[[n]];m=t],{n,Length@lst}] (* Giorgos Kalogeropoulos, Oct 25 2021 *)
  • Python
    from sympy import factorint
    from itertools import product
    def palsthru(maxdigits):
        midrange = [[""], [str(i) for i in range(10)]]
        for digits in range(1, maxdigits+1):
            for p in product("0123456789", repeat=digits//2):
                left = "".join(p)
                if len(left) and left[0] == '0': continue
                for middle in midrange[digits%2]:
                    yield int(left+middle+left[::-1])
    def afind(maxdigits):
        record = -1
        for p in palsthru(maxdigits):
            f = factorint(p, multiple=True)
            if p > 0 and len(f) > record:
                record = len(f)
                print(p, end=", ")
    afind(10) # Michael S. Branicky, Oct 25 2021

Extensions

a(1) = 1 from David A. Corneth, Oct 25 2021
a(16)-a(19) from Giorgos Kalogeropoulos, Oct 25 2021
a(20) from Michael S. Branicky, Oct 25 2021
a(21)-a(25) from Chai Wah Wu, Oct 28 2021
Showing 1-6 of 6 results.