A047209 Numbers that are congruent to {1, 4} mod 5.
1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 54, 56, 59, 61, 64, 66, 69, 71, 74, 76, 79, 81, 84, 86, 89, 91, 94, 96, 99, 101, 104, 106, 109, 111, 114, 116, 119, 121, 124, 126, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151, 154
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- William A. Stein, The modular forms database.
- Eric Weisstein's World of Mathematics, Determined by Spectrum.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
a047209 = (flip div 2) . (subtract 2) . (* 5) a047209_list = 1 : 4 : (map (+ 5) a047209_list) -- Reinhard Zumkeller, Jul 19 2013, Jan 05 2011
-
Maple
seq(floor(5*k/2)-1, k=1..100); # Wesley Ivan Hurt, Sep 27 2013
-
Mathematica
Select[Range[0, 200], MemberQ[{1, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *) LinearRecurrence[{1,1,-1},{1,4,6},70] (* Harvey P. Dale, Jul 19 2024 *)
-
PARI
a(n)=(10*n+(-1)^n-5)/4 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: (1+3x+x^2)/((1-x)(1-x^2)).
a(n) = floor((5n-2)/2). [corrected by Reinhard Zumkeller, Jul 19 2013]
a(1) = 1, a(n) = 5(n-1) - a(n-1). - Benoit Cloitre, Apr 12 2003
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = (10*n + (-1)^n - 5)/4.
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = a(n-2) + 5 for n > 2.
a(n) = 5*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
a(n)^2 = 5*A036666(n) + 1 (cf. also Comments). (End)
a(n) = 5*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
E.g.f.: 1 + ((10*x - 5)*exp(x) + exp(-x))/4. - David Lovler, Aug 23 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = phi (A001622).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/5) * cosec(Pi/5) (A352324). (End)
Extensions
Edited by Michael Somos, Sep 22 2002
Comments