cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A175887 Numbers that are congruent to {1, 14} mod 15.

Original entry on oeis.org

1, 14, 16, 29, 31, 44, 46, 59, 61, 74, 76, 89, 91, 104, 106, 119, 121, 134, 136, 149, 151, 164, 166, 179, 181, 194, 196, 209, 211, 224, 226, 239, 241, 254, 256, 269, 271, 284, 286, 299, 301, 314, 316, 329, 331, 344, 346, 359, 361, 374, 376, 389, 391, 404
Offset: 1

Views

Author

Bruno Berselli, Oct 08 2010 - Nov 17 2010

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in this case, a(n)^2-1==0 (mod 15).

Crossrefs

Programs

  • Haskell
    a175887 n = a175887_list !! (n-1)
    a175887_list = 1 : 14 : map (+ 15) a175887_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [n: n in [1..450] | n mod 15 in [1,14]];
    
  • Magma
    [(30*n+11*(-1)^n-15)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013
    
  • Mathematica
    Select[Range[1, 450], MemberQ[{1,14}, Mod[#, 15]]&]
    CoefficientList[Series[(1 + 13 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *)
  • PARI
    a(n)=(30*n+11*(-1)^n-15)/4 \\ Charles R Greathouse IV, Sep 28 2015

Formula

G.f.: x*(1+13*x+x^2)/((1+x)*(1-x)^2).
a(n) = (30*n+11*(-1)^n-15)/4.
a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3).
a(n) = 15*A000217(n-1) -2*sum(a(i), i=1..n-1) +1 for n>1.
a(n) = A047209(A047225(n+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/15)*cot(Pi/15) = A019693 * A019976 / 10. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((30*x - 15)*exp(x) + 11*exp(-x))/4. - David Lovler, Sep 05 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = (Pi/15)*cosec(Pi/15).
Product_{n>=2} (1 + (-1)^n/a(n)) = 2*cos(Pi/15). (End)

A047247 Numbers that are congruent to {2, 3, 4, 5} (mod 6).

Original entry on oeis.org

2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29, 32, 33, 34, 35, 38, 39, 40, 41, 44, 45, 46, 47, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 68, 69, 70, 71, 74, 75, 76, 77, 80, 81, 82, 83, 86, 87, 88, 89, 92, 93, 94, 95, 98, 99
Offset: 1

Views

Author

Keywords

Comments

The sequence is the interleaving of A047235 with A047270. - Guenther Schrack, Feb 10 2019
Numbers k for which A276076(k) and A276086(k) are multiples of three. For a simple proof, consider the penultimate digit in the factorial and primorial base expansions of n, A007623 and A049345. - Antti Karttunen, Feb 08 2024

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 6 in [2, 3, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047247:=n->(6*n-1-I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/4: seq(A047247(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Table[(6n-1-I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
    LinearRecurrence[{1,0,0,1,-1},{2,3,4,5,8},70] (* Harvey P. Dale, May 25 2024 *)
  • PARI
    my(x='x+O('x^70)); Vec(x*(2+x+x^2+x^3+x^4)/((1-x)*(1-x^4))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    a=(x*(2+x+x^2+x^3+x^4)/((1-x)*(1-x^4))).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019

Formula

G.f.: x*(2+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(1-x)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6*n - 1 - i^(2*n) - (1-i)*i^(-n) - (1+i)*i^n)/4 where i = sqrt(-1).
a(2*n) = A047270(n), a(2*n-1) = A047235(n).
a(n) = A047227(n) + 1, a(1-n) = - A047227(n). (End)
From Guenther Schrack, Feb 10 2019: (Start)
a(n) = (6*n - 1 - (-1)^n -2*(-1)^(n*(n+1)/2))/4.
a(n) = a(n-4) + 6, a(1)=2, a(2)=3, a(3)=4, a(4)=5, for n > 4.
a(n) = A047227(n) + 1. a(n) = A047246(n) + 2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/12 - 2*log(2)/3 + log(3)/4. - Amiram Eldar, Dec 17 2021

Extensions

More terms from Wesley Ivan Hurt, May 21 2016

A095894 a(2n) = 6*n^2 + 7*n + 1; a(2n+1) = 6*n^2 + 13*n + 7.

Original entry on oeis.org

1, 7, 14, 26, 39, 57, 76, 100, 125, 155, 186, 222, 259, 301, 344, 392, 441, 495, 550, 610, 671, 737, 804, 876, 949, 1027, 1106, 1190, 1275, 1365, 1456, 1552, 1649, 1751, 1854, 1962, 2071, 2185, 2300, 2420, 2541, 2667, 2794, 2926, 3059, 3197, 3336, 3480
Offset: 0

Views

Author

Gary W. Adamson, Jun 11 2004

Keywords

Comments

From Omar E. Pol, Jul 18 2012: (Start)
Positive terms of A051866 and positive terms of A049453 interleaved.
Also sequence found by reading the line from 1, in the direction 1, 14, ..., and the line from 7, in the direction 7, 26, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. (End)

Crossrefs

Cf. A047225 (first differences), A049453, A051866.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{1,7,14,26},60] (* Harvey P. Dale, Oct 13 2016 *)
  • PARI
    x='x+O('x^50); Vec((-1-5*x)/((1+x)*(x-1)^3)) \\ G. C. Greubel, Jun 19 2017

Formula

G.f.: ( -1-5*x ) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Oct 26 2011

Extensions

Edited by Don Reble, Nov 16 2005

A115731 Permutation of natural numbers generated by 3-rowed array shown below.

Original entry on oeis.org

1, 6, 2, 7, 5, 3, 12, 8, 4, 13, 11, 9, 18, 14, 10, 19, 17, 15, 24, 20, 16, 25, 23, 21, 30, 26, 22, 31, 29, 27, 36, 32, 28, 37, 35, 33, 42, 38, 34, 43, 41, 39, 48, 44, 40, 49, 47, 45, 54, 50, 46, 55, 53, 51, 60, 56, 52, 61, 59, 57, 66, 62, 58, 67, 65, 63, 72, 68, 64, 73, 71, 69
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 19 2006

Keywords

Comments

1 6 7 12 13 18 19 24 25 ... a(n)=congruent to {0, 1} mod 6, Cf. A047225.
2 5 8 11 14 17 20 23 26 ... a(n)= 3n+2= A016789.
3 4 9 10 15 16 21 22 27 ... a(n)=congruent to {3, 4} mod 6, Cf. A047230.

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Cf. A115302.

Programs

  • PARI
    Vec(x*(1 + 4*x - 8*x^2 + 13*x^3 - 15*x^4 + 13*x^5 - 5*x^6 - 4*x^7 + 4*x^8) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)) + O(x^80)) \\ Colin Barker, Apr 01 2018

Formula

Starting with the term a(3), a(n+6k) = a(n) + 6k, with k>=1.
From Colin Barker, Apr 01 2018: (Start)
G.f.: x*(1 + 4*x - 8*x^2 + 13*x^3 - 15*x^4 + 13*x^5 - 5*x^6 - 4*x^7 + 4*x^8) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>9.
(End)

A131231 3*A130296 - 2*A128174.

Original entry on oeis.org

1, 6, 1, 7, 3, 1, 12, 1, 3, 1, 13, 3, 1, 3, 1, 18, 1, 3, 1, 3, 1, 19, 3, 1, 3, 1, 3, 1, 24, 1, 3, 1, 3, 1, 3, 1, 25, 3, 1, 3, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 20 2007

Keywords

Comments

Left column = A047225, numbers congruent to {0,1} mod 6: (1, 6, 7, 12, 13, 18, 19, ...).
Row sums = A131229, numbers congruent to {1,7} mod 10: (1, 7, 11, 17, ...).

Examples

			First few rows of the triangle:
   1;
   6, 1;
   7, 3, 1;
  12, 1, 3, 1;
  13, 3, 1, 3, 1;
  ...
		

Crossrefs

Formula

3*A130296 - 2*A128174 as infinite lower triangular matrices.

A317613 Permutation of the nonnegative integers: lodumo_4 of A047247.

Original entry on oeis.org

2, 3, 0, 1, 4, 5, 6, 7, 10, 11, 8, 9, 12, 13, 14, 15, 18, 19, 16, 17, 20, 21, 22, 23, 26, 27, 24, 25, 28, 29, 30, 31, 34, 35, 32, 33, 36, 37, 38, 39, 42, 43, 40, 41, 44, 45, 46, 47, 50, 51, 48, 49, 52, 53, 54, 55, 58, 59, 56, 57, 60, 61, 62, 63, 66, 67, 64
Offset: 0

Views

Author

Keywords

Comments

Write n in base 8, then apply the following substitution to the rightmost digit: '0'->'2, '1'->'3', and vice versa. Convert back to decimal.
A self-inverse permutation: a(a(n)) = n.
Array whose columns are, in this order, A047463, A047621, A047451 and A047522, read by rows.

Examples

			a(25) = a('3'1') = '3'3' = 27.
a(26) = a('3'2') = '3'0' = 24.
a(27) = a('3'3') = '3'1' = 25.
a(28) = a('3'4') = '3'4' = 28.
a(29) = a('3'5') = '3'5' = 29.
The sequence as array read by rows:
  A047463, A047621, A047451, A047522;
        2,       3,       0,       1;
        4,       5,       6,       7;
       10,      11,       8,       9;
       12,      13,      14,      15;
       18,      19,      16,      17;
       20,      21,      22,      23;
       26,      27,      24,      25;
       28,      29,      30,      31;
  ...
		

Crossrefs

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1)))); // G. C. Greubel, Sep 25 2018
  • Mathematica
    Table[(4*(Floor[1/4 Mod[2*n + 4, 8]] - Floor[1/4 Mod[n + 2, 8]]) + 2*n)/2, {n, 0, 100}]
    f[n_] := Block[{id = IntegerDigits[n, 8]}, FromDigits[ Join[Most@ id /. {{} -> {0}}, {id[[-1]] /. {0 -> 2, 1 -> 3, 2 -> 0, 3 -> 1}}], 8]]; Array[f, 67, 0] (* or *)
    CoefficientList[ Series[(x^7 + x^5 + 3x^3 - 2x^2 - x + 2)/((x - 1)^2 (x^6 + x^4 + x^2 + 1)), {x, 0, 70}], x] (* or *)
    LinearRecurrence[{2, -2, 2, -2, 2, -2, 2, -1}, {2, 3, 0, 1, 4, 5, 6, 7}, 70] (* Robert G. Wilson v, Aug 01 2018 *)
  • Maxima
    makelist((4*(floor(mod(2*n + 4, 8)/4) - floor(mod(n + 2, 8)/4)) + 2*n)/2, n, 0, 100);
    
  • PARI
    my(x='x+O('x^100)); Vec((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1))) \\ G. C. Greubel, Sep 25 2018
    

Formula

a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - a(n-8), n > 7.
a(n) = (4*(floor(((2*n + 4) mod 8)/4) - floor(((n + 2) mod 8)/4)) + 2*n)/2.
a(n) = lod_4(A047247(n+1)).
a(4*n) = A047463(n+1).
a(4*n+1) = A047621(n+1).
a(4*n+2) = A047451(n+1).
a(4*n+3) = A047522(n+1).
a(A042948(n)) = A047596(n+1).
a(A042964(n+1)) = A047551(n+1).
G.f.: (x^7 + x^5 + 3*x^3 - 2*x^2 - x + 2)/((x-1)^2 * (x^2+1) * (x^4+1)).
E.g.f.: x*exp(x) + cos(x) + sin(x) + cos(x/sqrt(2))*cosh(x/sqrt(2)) + (sqrt(2)*cos(x/sqrt(2)) - sin(x/sqrt(2)))*sinh(x/sqrt(2)).
a(n+8) = a(n) + 8 . - Philippe Deléham, Mar 09 2023
Sum_{n>=3} (-1)^(n+1)/a(n) = 1/6 + log(2). - Amiram Eldar, Mar 12 2023
Showing 1-6 of 6 results.