cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A274978 Integers of the form m*(m + 6)/7.

Original entry on oeis.org

0, 1, 13, 16, 40, 45, 81, 88, 136, 145, 205, 216, 288, 301, 385, 400, 496, 513, 621, 640, 760, 781, 913, 936, 1080, 1105, 1261, 1288, 1456, 1485, 1665, 1696, 1888, 1921, 2125, 2160, 2376, 2413, 2641, 2680, 2920, 2961, 3213, 3256, 3520, 3565, 3841, 3888, 4176, 4225, 4525, 4576
Offset: 1

Views

Author

Bruno Berselli, Jul 15 2016

Keywords

Comments

Nonnegative values of m are listed in A047274.
Also, numbers h such that 7*h + 9 is a square.
Equivalently, numbers of the form i*(7*i - 6) with i = 0, 1, -1, 2, -2, 3, -3, ...
Infinitely many squares belong to this sequence.
Generalized 16-gonal (or hexadecagonal) numbers. See the third comment. - Omar E. Pol, Jun 06 2018
Partial sums of A317312. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(14*n-13))*(1 + x^(14*n-1))*(1 - x^(14*n)) = 1 + x + x^13 + x^16+ x^40 + .... - Peter Bala, Dec 10 2020

Examples

			88 is in the sequence because 88 = 22*(22+6)/7 or also 88 = 4*(7*4-6).
		

Crossrefs

Supersequence of A051868.
Cf. A317312.
Cf. sequences of the form m*(m+k)/(k+1): A000290 (k=0), A000217 (k=1), A001082 (k=2), A074377 (k=3), A195162 (k=4), A144065 (k=5), A274978 (k=6), A274979 (k=7), A218864 (k=8).
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), this sequence (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [t: m in [0..200] | IsIntegral(t) where t is m*(m+6)/7];
  • Mathematica
    Select[m = Range[0, 200]; m (m + 6)/7, IntegerQ] (* Jean-François Alcover, Jul 21 2016 *)
    Select[Table[(n(n+6))/7,{n,0,200}],IntegerQ] (* Harvey P. Dale, Sep 20 2022 *)
  • Sage
    def A274978_list(len):
        h = lambda m: m*(m+6)/7
        return [h(m) for m in (0..len) if h(m) in ZZ]
    print(A274978_list(179)) # Peter Luschny, Jul 18 2016
    

Formula

O.g.f.: x^2*(1 + 12*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (5*(2*x + 1)*exp(-x) + (14*x^2 - 5)*exp(x))/8.
a(n) = (14*(n-1)*n - 5*(2*n-1)*(-1)^n - 5)/8.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 6. - Wesley Ivan Hurt, Dec 18 2020
Sum_{n>=2} 1/a(n) = (7 + 6*Pi*cot(Pi/7))/36. - Amiram Eldar, Feb 28 2022

A071833 Frequency ratios for notes of C-major scale starting at c = 24 and using Ptolemy's intense diatonic scale.

Original entry on oeis.org

24, 27, 30, 32, 36, 40, 45, 48, 54, 60, 64, 72, 80, 90, 96, 108, 120, 128, 144, 160, 180, 192, 216, 240, 256, 288, 320, 360, 384, 432, 480, 512, 576, 640, 720, 768, 864, 960, 1024, 1152, 1280, 1440, 1536, 1728, 1920, 2048, 2304, 2560, 2880
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2002

Keywords

Comments

All terms are 5-smooth numbers due to the 5-limit-tuning of the natural major scale, where all the ratios prime factors are all less than or equal to 5. - Federico Provvedi, Sep 09 2022
From Federico Provvedi, Apr 19 2024: (Start)
This natural scale has interesting musical and mathematical Diophantine relations between the sum of distinct interval ratios a(n)/a(0) and their own indices: with indices i(k) != j(k), Sum_{k=1..n} a(i(k)) = Sum_{k=1..n} a(j(k)) and
Sum_{k=1..n} i(k) = Sum_{k=1..n} j(k), for n=4 a solution is:
1 + 4/3 + 5/3 + 15/8 = 9/8 + 5/4 + 3/2 + 2 ,
I + IV + VI + VII = II + III + V + VIII,
1 + 4 + 6 + 7 = 2 + 3 + 5 + 8 ,
a(0) + a(3) + a(5) + a(6) = a(1) + a(2) + a(4) + a(7). (End)
In the terminology of classical music theory, a(0) to a(7) are the frequencies of the diatonic C-major scale (C,D,E,F,G,A,B,C) as tuned in "Just Intonation", starting with frequency C=24=a(0). On keyboard instruments, these are the "white notes". Each higher octave of 8 notes doubles the frequencies of the prior octave, hence, a(n+7) = 2*a(n). The a(n) frequencies of Just Intonation are uniquely determined by requiring that the notes in each of the three principal major triads, namely, the tonic triad (C:E:G), the dominant triad (G:B:D), and the subdominant triad (F:A:C), all have frequencies with exact ratios of 4:5:6. The base frequency of C=24=a(0) is the lowest frequency of C for which all a(n) are integers. (In actual practice, keyboard notes are usually tuned to non-integer frequencies, are based on a "middle C" frequency around 261.62 Hz, and have irrational frequency ratios due to "equal temperament" - see A010774.) - Robert B Fowler, Aug 21 2024

Examples

			The ratios are 24 times 1 (c), 9/8 (d), 5/4 (e), 4/3 (f), 3/2 (g), 5/3 (a), 15/8 (b), followed by these 7 numbers multiplied by successive powers of 2.
		

Crossrefs

Cf. A071831, A071832, subset of A051037, A010774.

Programs

  • Mathematica
    Table[ 2^Floor[n/7] ( 3*(91 + (-1)^Mod[n, 7] ) + 42 Mod[n, 7] + 8 Sqrt[3] Sin[Pi(1 + Mod[n, 7])/3] ) / 12,  {n, 0, 70}] (* Federico Provvedi, Aug 28 2012 *)
    3*2^(3+Floor[#/7])*Rationalize[2^((-1+Floor[12(1+Mod[#,7])/7])/12),2^-6]&/@Range[0,70] (* Federico Provvedi, Oct 13 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,2},{24,27,30,32,36,40,45},50] (* Harvey P. Dale, May 23 2016 *)
  • Python
    def a(n): return [24, 27, 30, 32, 36, 40, 45][n % 7] << (n // 7) # Peter Luschny, Aug 22 2024

Formula

a(n) = 2^floor(n/7) * (3*(91 + (-1)^(n mod 7)) + 42*(n mod 7) + 8*sqrt(3) * sin(Pi*(1+(n mod 7))/3))/12. - Federico Provvedi, Aug 28 2012
G.f.: -(45*x^6 + 40*x^5 + 36*x^4 + 32*x^3 + 30*x^2 + 27*x + 24) / (2*x^7 - 1). - Colin Barker, Feb 14 2014
a(b(n)) - a(b(n)+1) - a(b(n)+2) + a(b(n)+3) - a(b(n)+4) + a(b(n)+5) + a(b(n)+6) - a(b(n)+7) = 0, where b(n) = A047274(n). - Federico Provvedi, Apr 19 2024
a(n) = 2^floor(n/7) * round(24 * 2^(floor( (12*(n mod 7)+5)/7) / 12)). - Robert B Fowler, Aug 22 2024

Extensions

More terms from Kerri Sullivan (ksulliva(AT)ashland.edu), Oct 31 2005
Name made more specific by Jon E. Schoenfield, Sep 12 2022

A219191 Numbers of the form k*(7*k+1), where k = 0,-1,1,-2,2,-3,3,...

Original entry on oeis.org

0, 6, 8, 26, 30, 60, 66, 108, 116, 170, 180, 246, 258, 336, 350, 440, 456, 558, 576, 690, 710, 836, 858, 996, 1020, 1170, 1196, 1358, 1386, 1560, 1590, 1776, 1808, 2006, 2040, 2250, 2286, 2508, 2546, 2780, 2820, 3066, 3108, 3366, 3410, 3680, 3726, 4008
Offset: 1

Views

Author

Bruno Berselli, Nov 14 2012

Keywords

Comments

Equivalently, numbers m such that 28*m+1 is a square.
Also, integer values of h*(h+1)/7.
Let F(r) = Product_{n >= 1} 1 - q^(14*n-r). The sequence terms are the exponents in the expansion of F(0)*F(6)*F(8) = 1 - q^6 - q^8 + q^26 + q^30 - q^60 - q^66 + + - - ... (by the triple product identity).- Peter Bala, Dec 25 2024

Crossrefs

Cf. numbers of the form k*(i*k+1) with k in A001057: i=0, A001057; i=1, A110660; i=2, A000217; i=3, A152749; i=4, A074378; i=5, A219190; i=6, A036498; i=7, this sequence; i=8, A154260.
Cf. A113801 (square roots of 28*a(n)+1, see the comment).
Cf. similar sequences listed in A219257.
Subsequence of A011860.

Programs

  • Magma
    k:=7; f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..25]];
    
  • Magma
    I:=[0,6,8,26,30]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A := proc (q) local n; for n from 0 to q do if type(sqrt(28*n+1), integer) then print(n) fi; od; end: A(4100); # Peter Bala, Dec 25 2024
  • Mathematica
    Rest[Flatten[{# (7 # - 1), # (7 # + 1)} & /@ Range[0, 25]]]
    CoefficientList[Series[2 x (3 + x + 3 x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,6,8,26,30},50] (* Harvey P. Dale, Sep 14 2022 *)

Formula

G.f.: 2*x^2*(3+x+3*x^2)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (14*n*(n-1)+5*(-1)^n*(2*n-1)+5)/8.
a(n) = 2*A057570(n) = (1/7)*A047335(n)*A047274(n+1).
Sum_{n>=2} 1/a(n) = 7 - cot(Pi/7)*Pi. - Amiram Eldar, Mar 17 2022

A151972 Numbers that are congruent to {0, 1, 6, 10} mod 15.

Original entry on oeis.org

0, 1, 6, 10, 15, 16, 21, 25, 30, 31, 36, 40, 45, 46, 51, 55, 60, 61, 66, 70, 75, 76, 81, 85, 90, 91, 96, 100, 105, 106, 111, 115, 120, 121, 126, 130, 135, 136, 141, 145, 150, 151, 156, 160, 165, 166, 171, 175, 180, 181, 186, 190, 195, 196, 201, 205, 210, 211, 216, 220, 225
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2009

Keywords

Comments

Also, numbers n such that n^2 - n is divisible by 15.
Also, numbers n such that n^2 - n is divisible by 30.

Crossrefs

For m^2 == m (mod n), see: n=2: A001477, n=3: A032766, n=4: A042948, n=5: A008851, n=6: A032766, n=7: A047274, n=8: A047393, n=9: A090570, n=10: A008851, n=11: A112651, n=12: A112652, n=13: A112653, n=14: A047274, n=15: A151972, n=16: A151977, n=17: A151978, n=18: A090570, n=19: A151979, n=20: A151980, n=21: A151971, n=22, A112651, n=24: A151973, n=26: A112653, n=30: A151972, n=32: A151983, n=34: A151978, n=38: A151979, n=42: A151971, n=48: A151981, n=64: A151984.
Cf. A215202.

Programs

Formula

G.f.: x^2*(1+5*x+4*x^2+5*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = (30*n-41-5*i^(2*n)+(3+3*i)*i^(-n)+(3-3*i)*i^n)/8 where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. (End)
E.g.f.: (20 + (15*x - 23)*cosh(x) + 3*(sin(x) + cos(x) + (5*x - 6)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016

Extensions

This is a merge of two identical sequences, A151972 and A151975.

A151971 Numbers n such that n^2 - n is divisible by 21.

Original entry on oeis.org

0, 1, 7, 15, 21, 22, 28, 36, 42, 43, 49, 57, 63, 64, 70, 78, 84, 85, 91, 99, 105, 106, 112, 120, 126, 127, 133, 141, 147, 148, 154, 162, 168, 169, 175, 183, 189, 190, 196, 204, 210, 211, 217, 225, 231, 232, 238, 246, 252, 253, 259, 267, 273, 274, 280, 288, 294, 295, 301, 309
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2009

Keywords

Comments

Equivalently, numbers that are congruent to {0, 1, 7, 15} mod 21. - Bruno Berselli, Aug 06 2012

Crossrefs

For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13:A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984.
Cf. A215202.

Programs

  • Magma
    [n: n in [0..309] | IsZero((n^2-n) mod 21)]; // Bruno Berselli, Aug 06 2012
    
  • Maple
    A151971:=n->(42*n+14*I^((n-1)*n)-3*I^(2*n)-3)/8-7: seq(A151971(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
  • Mathematica
    Select[Range[0,400], Divisible[#^2-#,21]&] (* Harvey P. Dale, Jun 04 2012 *)
  • Maxima
    makelist((42*n+14*%i^((n-1)*n)-3*(-1)^n-3)/8-7, n, 1, 60); /* Bruno Berselli, Aug 06 2012 */

Formula

From Bruno Berselli, Aug 06 2012: (Start)
G.f.: x^2*(1+6*x+8*x^2+6*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (42*n +14*i^((n-1)*n) -3*(-1)^n -3)/8 -7, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 07 2016
E.g.f.: (24 + (21*x - 31)*cosh(x) + 7*(sin(x) + cos(x) + (3*x - 4)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016

A215202 Irregular triangle in which n-th row gives m in 1, ..., n-1 such that m^2 == m (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 5, 6, 1, 1, 4, 9, 1, 1, 7, 8, 1, 6, 10, 1, 1, 1, 9, 10, 1, 1, 5, 16, 1, 7, 15, 1, 11, 12, 1, 1, 9, 16, 1, 1, 13, 14, 1, 1, 8, 21, 1, 1, 6, 10, 15, 16, 21, 25, 1, 1, 1, 12, 22, 1, 17, 18, 1, 15, 21, 1, 9, 28, 1, 1, 19, 20, 1, 13
Offset: 2

Views

Author

Eric M. Schmidt, Aug 05 2012

Keywords

Comments

The n-th row has length A034444(n) - 1.
If m appears in row n, then gcd(n,m) appears in the n-th row of A077610. Moreover, if m', distinct from m, also appears in row n, then gcd(n, m) does not equal gcd(n, m').
For odd n and any integer m, m^2 == m (mod n) iff m^2 == m (mod 2n).
Let P(1)={1} and for integers x > 1, let P(x) be the set of distinct prime divisors of x. We can define an equivalence relation ~ on the set of elements in the ring (Z_n, +mod n,*mod n): for all a,b in Z_n (where a,b are the least nonnegative residues modulo n) a ~ b iff P(gcd(a,n)) intersect P(n) is equal to P(gcd(b,n)) intersect P(n). If we include 0 in each row then these elements can represent the equivalence classes. They form a commutative monoid. - Geoffrey Critzer, Feb 13 2016

Examples

			Triangle begins:
1;
1;
1;
1;
1, 3, 4;
1;
1;
1;
1, 5, 6;
1;
1, 4, 9;
1;
1, 7, 8;
1, 6, 10;
1;
1;
1, 9, 10; etc.  - _Bruno Berselli_, Aug 06 2012
		

Crossrefs

For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13: A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984; n=100: A008852; n=1000: A008853.

Programs

  • Magma
    [m: m in [1..n-1], n in [2..40] | m^2 mod n eq m]; // Bruno Berselli, Aug 06 2012
  • Mathematica
    Table[Select[Range[n], Mod[#^2, n] == # &], {n, 2, 30}] // Grid (* Geoffrey Critzer, May 26 2015 *)
  • Sage
    def A215202(n) : return [m for m in range(1, n) if m^2 % n == m];
    

A147832 Numbers congruent (0,2) mod 14.

Original entry on oeis.org

0, 2, 14, 16, 28, 30, 42, 44, 56, 58, 70, 72, 84, 86, 98, 100, 112, 114, 126, 128, 140, 142, 154, 156, 168, 170, 182, 184, 196, 198, 210, 212, 224, 226, 238, 240, 252, 254, 266, 268, 280, 282, 294, 296, 308, 310, 322, 324, 336, 338, 350, 352, 364, 366, 378, 380
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 14 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{#,#+2}&/@(14 Range[0,30])]  (* Harvey P. Dale, Dec 25 2010 *)

Formula

Except for the initial term, a(n) = A113801(n-1) + 1.
a(n) = 14*n - a(n-1) - 26 (with a(1)=0). - Vincenzo Librandi, Dec 17 2010
From Bruno Berselli, Dec 17 2010: (Start)
G.f.: 2*x^2*(1+6*x)/((1+x)*(1-x)^2).
a(n) = 2*A047274(n) = (14*n - 5*(-1)^n - 19)/2.
a(n) = 2*(A001106(n-1) - Sum_{i=1..n-1} a(i)) for n > 1. (End)

Extensions

382 replaced with 380 by R. J. Mathar, Jun 28 2010
Showing 1-7 of 7 results.