cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A047388 Numbers that are congruent to {0, 1, 2, 5} mod 7.

Original entry on oeis.org

0, 1, 2, 5, 7, 8, 9, 12, 14, 15, 16, 19, 21, 22, 23, 26, 28, 29, 30, 33, 35, 36, 37, 40, 42, 43, 44, 47, 49, 50, 51, 54, 56, 57, 58, 61, 63, 64, 65, 68, 70, 71, 72, 75, 77, 78, 79, 82, 84, 85, 86, 89, 91, 92, 93, 96, 98, 99, 100, 103, 105, 106, 107, 110, 112
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0, 1, 2, 5, 7]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 15 2012
    
  • Maple
    A047388:=n->(-19+I^(2*n)+(1+3*I)*(-I)^n+(1-3*I)*I^n+14*n)/8: seq(A047388(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,300], MemberQ[{0,1,2,5}, Mod[#,7]]&] (* Vincenzo Librandi, May 15 2012 *)
    LinearRecurrence[{1,0,0,1,-1},{0,1,2,5,7},80] (* Harvey P. Dale, Jan 10 2023 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(x^2*(1+x+3*x^2+2*x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Jun 02 2016

Formula

G.f.: x^2*(1+x+3*x^2+2*x^3)/((1-x)^2*(1+x)*(1+x^2)). - Colin Barker, May 13 2012
a(n) = (-19+(-1)^n+(1+3*i)*(-i)^n+(1-3*i)*i^n+14*n)/8 where i=sqrt(-1). - Colin Barker, May 14 2012
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 16 2012
a(2k) = A047383(k), a(2k-1) = A047352(k). - Wesley Ivan Hurt, Jun 01 2016

A047392 Numbers that are congruent to {0, 1, 3, 5} mod 7.

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 49, 50, 52, 54, 56, 57, 59, 61, 63, 64, 66, 68, 70, 71, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 91, 92, 94, 96, 98, 99, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047371: n + floor(3*n/4-1/2) - 1; A047379: n + floor(3*n/4-1/4) - 1.

Programs

  • Magma
    [n: n in [0..100] | n mod 7 in [0, 1, 3, 5]]; // Wesley Ivan Hurt, May 21 2016
  • Maple
    A047392:=n->(14*n-17-I^(2*n)+(1+I)*I^(-n)+(1-I)*I^n)/8: seq(A047392(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Table[(14n-17-I^(2n)+(1+I)*I^(-n)+(1-I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
    Table[n + Floor[3 n/4 - 3/4] - 1, {n, 1, 70}] (* Bruno Berselli, Jun 15 2016 *)

Formula

G.f.: x^2*(1+2*x+2*x^2+2*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n - 17 - i^(2*n) + (1 + i)*i^(-n) + (1 - i)*i^n)/8.
a(2k) = A047383(k), a(2k-1) = A047355(k). (End)
a(n) = n + floor(3*n/4-3/4) - 1. - Bruno Berselli, Jun 15 2016

Extensions

More terms from Wesley Ivan Hurt, May 21 2016

A047329 Numbers that are congruent to {1, 3, 5, 6} mod 7.

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 26, 27, 29, 31, 33, 34, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 54, 55, 57, 59, 61, 62, 64, 66, 68, 69, 71, 73, 75, 76, 78, 80, 82, 83, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 103, 104, 106, 108, 110, 111
Offset: 1

Views

Author

Keywords

References

  • Robert Fludd, Utriusque Cosmi ... Historia, Oppenheim, 1617-1619.

Crossrefs

Programs

Formula

a(n) = floor((7n-1)/4). - Gary Detlefs, Mar 07 2010
G.f.: (x*(1+2*x+2*x^2+x^3+x^4)) / ((1+x)*(x^2+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (14n-5-i^(2n)-(1+i)*i^(-n)-(1-i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047280(n), a(2n-1) = A047383(n). (End)
E.g.f.: (4 - sin(x) - cos(x) + (7*x - 2)*sinh(x) + (7*x - 3)*cosh(x))/4. - Ilya Gutkovskiy, May 21 2016

Extensions

Fludd reference from Brendan McKay, May 27 2003
More terms from Wesley Ivan Hurt, May 21 2016

A257772 Numbers n>=0 such that (n+1)^3 - n^3 = 3*n^2+3*n+1 is not prime.

Original entry on oeis.org

0, 5, 7, 8, 12, 15, 16, 18, 19, 20, 21, 22, 26, 29, 31, 33, 35, 36, 39, 40, 43, 44, 46, 47, 50, 51, 53, 54, 56, 57, 59, 60, 61, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 82, 83, 84, 85, 87, 89, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106
Offset: 1

Views

Author

Keywords

Comments

Complement of A111251.
Includes all members of A047383 except 1. - Robert Israel, May 12 2015

Examples

			5 is a term since (5+1)^3 - 5^3 = 91 = 13*7 is not prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..120] | not IsPrime(3*n^2+3*n+1)]; // Vincenzo Librandi, May 13 2015
    
  • Maple
    remove(t -> isprime((t+1)^3-t^3), [$0..300]); # Robert Israel, May 12 2015
  • Mathematica
    Select[Range[0, 200], ! PrimeQ[(#+1)^3 - #^3] &] (* Giovanni Resta, May 08 2015 *)
  • PARI
    for(n=0,100,if(!isprime(3*n^2+3*n+1),print1(n,", "))) \\ Derek Orr, May 19 2015
  • UBASIC
    10 print 0
    20 for n=1 to 200
    30   s = (n+1)^3 - n^3
    40   if prmdiv(s)<>s then print n
    50 next n
    

Formula

a(n) ~ n. - Charles R Greathouse IV, May 22 2015

A047313 Numbers that are congruent to {1, 4, 5, 6} mod 7.

Original entry on oeis.org

1, 4, 5, 6, 8, 11, 12, 13, 15, 18, 19, 20, 22, 25, 26, 27, 29, 32, 33, 34, 36, 39, 40, 41, 43, 46, 47, 48, 50, 53, 54, 55, 57, 60, 61, 62, 64, 67, 68, 69, 71, 74, 75, 76, 78, 81, 82, 83, 85, 88, 89, 90, 92, 95, 96, 97, 99, 102, 103, 104, 106, 109, 110, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: x*(1+3*x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 03 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-3+i^(2n)-(3+i)*i^(-n)-(3-i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047288(n), a(2n-1) = A047383(n). (End)
E.g.f.: (4 - sin(x) - 3*cos(x) + (7*x - 2)*sinh(x) + (7*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016

A047325 Numbers that are congruent to {1, 2, 5, 6} mod 7.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 12, 13, 15, 16, 19, 20, 22, 23, 26, 27, 29, 30, 33, 34, 36, 37, 40, 41, 43, 44, 47, 48, 50, 51, 54, 55, 57, 58, 61, 62, 64, 65, 68, 69, 71, 72, 75, 76, 78, 79, 82, 83, 85, 86, 89, 90, 92, 93, 96, 97, 99, 100, 103, 104, 106, 107, 110, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [1, 2, 5, 6]]; // Wesley Ivan Hurt, May 23 2016
  • Maple
    A047325:=n->(14*n-7-3*I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/8: seq(A047325(n), n=1..100); # Wesley Ivan Hurt, May 23 2016
  • Mathematica
    Table[(14n-7-3*I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 23 2016 *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 5, 6, 8}, 80] (* Vincenzo Librandi, May 24 2016 *)
    #+{1,2,5,6}&/@(7*Range[0,20])//Flatten (* Harvey P. Dale, Aug 16 2018 *)

Formula

G.f.: x*(1+x+3*x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-7-3*i^(2n)+(1-i)*i^(-n)+(1+i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047276(n), a(2n-1) = A047383(n). (End)
E.g.f.: (4 - sin(x) + cos(x) + (7*x - 2)*sinh(x) + (7*x - 5)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016

Extensions

More terms from Wesley Ivan Hurt, May 23 2016

A047377 Numbers that are congruent to {0, 1, 4, 5} mod 7.

Original entry on oeis.org

0, 1, 4, 5, 7, 8, 11, 12, 14, 15, 18, 19, 21, 22, 25, 26, 28, 29, 32, 33, 35, 36, 39, 40, 42, 43, 46, 47, 49, 50, 53, 54, 56, 57, 60, 61, 63, 64, 67, 68, 70, 71, 74, 75, 77, 78, 81, 82, 84, 85, 88, 89, 91, 92, 95, 96, 98, 99, 102, 103, 105, 106, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 1, 4, 5]]; // Wesley Ivan Hurt, May 24 2016
  • Maple
    A047377:=n->(14*n-15-3*I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/8: seq(A047377(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
  • Mathematica
    Table[(14n-15-3*I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *)
    Select[Range@ 120, MemberQ[{0, 1, 4, 5}, Mod[#, 7]] &] (* Michael De Vlieger, May 24 2016 *)
    a[n_] :=  n + Floor[(n - 1)/2] +  Floor[(n - 3)/4];
    Table[a[n], {n, 1, 64}] (* Peter Luschny, Dec 23 2021 *)

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=4 and b(k)=7*2^(k-2) for k>1. - Philippe Deléham, Oct 25 2011
G.f.: x^2*(1+3*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-15-3*i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n)/8, where i=sqrt(-1).
a(2k) = A047383(k), a(2k-1) = A047345(k). (End)
E.g.f.: (8 - sin(x) + cos(x) + (7*x - 6)*sinh(x) + (7*x - 9)*cosh(x))/4. - Ilya Gutkovskiy, May 25 2016

Extensions

More terms from Wesley Ivan Hurt, May 24 2016

A131227 2*A051340 - A128174.

Original entry on oeis.org

1, 2, 3, 1, 2, 5, 2, 1, 2, 7, 1, 2, 1, 2, 9, 2, 1, 2, 1, 2, 11, 1, 2, 1, 2, 1, 2, 13, 2, 1, 2, 1, 2, 1, 2, 15, 1, 2, 1, 2, 1, 2, 1, 2, 17, 2, 1, 2, 1, 2, 1, 2, 1, 2, 19
Offset: 0

Views

Author

Gary W. Adamson, Jun 20 2007

Keywords

Comments

Row sums = A047383, numbers congruent to {1,5} mod 7: (1, 5, 8, 12, 15, 19, ...)

Examples

			First few rows of the triangle:
  1;
  2, 3;
  1, 2, 5;
  2, 1, 2, 7;
  1, 2, 1, 2, 9;
  2, 1, 2, 1, 2, 11;
  1, 2, 1, 2, 1,  2, 13;
  ...
		

Crossrefs

Formula

2*A051340 - A128174 as infinite lower triangular matrices.

A144652 Triangle, read by rows, where T(m,n) = floor((2mn+m+n)/2) with m >= n >= 1.

Original entry on oeis.org

2, 3, 6, 5, 8, 12, 6, 11, 15, 20, 8, 13, 19, 24, 30, 9, 16, 22, 29, 35, 42, 11, 18, 26, 33, 41, 48, 56, 12, 21, 29, 38, 46, 55, 63, 72, 14, 23, 33, 42, 52, 61, 71, 80, 90, 15, 26, 36, 47, 57, 68, 78, 89, 99, 110, 17, 28, 40, 51, 63, 74, 86, 97, 109, 120, 132, 18, 31, 43, 56, 68
Offset: 1

Views

Author

Vincenzo Librandi, Jan 27 2009

Keywords

Comments

From Vincenzo Librandi, Nov 16 2012: (Start)
First column: A007494(n+1);
second column: A047219(n+2);
third column: A047383(n+3);
fourth column: A193910(n+4).
Conjecture: If h does not belong to the sequence, then 4*h+1 is prime. (End)

Examples

			Triangle begins:
2;
3,  6;
5,  8,  12;
6,  11, 15, 20;
8,  13, 19, 24, 30;
9,  16, 22, 29, 35, 42;
11, 18, 26, 33, 41, 48, 56; etc.
		

Crossrefs

Programs

  • Magma
    [Floor((2*n*k+n+k)/2): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 16 2012
  • Mathematica
    Flatten[Table[Floor[(2*n*m + m + n)/2], {n, 1, 20}, {m, n}]] (* Vincenzo Librandi, Nov 16 2012 *)

Extensions

Definition edited (specifying m >= n >= 1), and terms recomputed to match definition, as was done with the similar sequence A140869, by Jon E. Schoenfield, Jun 24 2010

A131230 Triangle read by rows: 2*A130296 - A128174.

Original entry on oeis.org

1, 4, 1, 5, 2, 1, 8, 1, 2, 1, 9, 2, 1, 2, 1, 12, 1, 2, 1, 2, 1, 13, 2, 1, 2, 1, 2, 1, 16, 1, 2, 1, 2, 1, 2, 1, 17, 2, 1, 2, 1, 2, 1, 2, 1, 20, 1, 2, 1, 2, 1, 2, 1, 2, 1, 21, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 24, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 25, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 20 2007

Keywords

Comments

Left column = A042948, numbers congruent to {1,0} mod 4: (1, 4, 5, 8, 9, 12, ...).
Row sums = A047383, numbers congruent to {1,5} mod 7: (1, 5, 8, 12, 15, ...).

Examples

			First few rows of the triangle:
   1;
   4, 1;
   5, 2, 1;
   8, 1, 2, 1;
   9, 2, 1, 2, 1;
  12, 1, 2, 1, 2, 1;
  ...
		

Crossrefs

Extensions

Incorrect formula removed and more terms from Georg Fischer, Jun 08 2023
Showing 1-10 of 10 results.