cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A049105 Ratio from A049101.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 4, 2, 4, 8, 1, 1, 8, 8, 6, 5, 4, 2, 2, 8, 3
Offset: 1

Views

Author

Keywords

Crossrefs

A049102 Positive numbers n such that n is a multiple of (product of digits of n) * (sum of digits of n).

Original entry on oeis.org

1, 12, 111, 112, 135, 144, 216, 432, 2112, 11112, 11115, 11232, 12312, 13824, 14112, 21112, 23112, 27216, 31212, 41112, 81216, 93312, 111132, 122112, 124416, 131112, 132192, 186624, 212112, 221112, 221184, 222912, 239112, 248832, 311472, 316224
Offset: 1

Views

Author

Keywords

Comments

Empirically, it looks as if every number of the form (10^3^n-1)/9 has this property. - David W. Wilson, Dec 12 2001
From David A. Corneth, Jan 23 2019: (Start)
Indeed, (10^3^n-1)/9 is in the sequence. It has digital sum times product of digits equal to 3^n.
Proof: (10^3^0-1)/9 = (10^1-1)/9 = 1 is in the sequence.
If (10^3^k-1)/9 is in the sequence then (10^3^(k + 1)-1)/9 = ((10^3^k-1)/9) * (10^(2*3^k) + 10^(3^k) + 1) = 3 * m * ((10^3^k-1)/9) for some m. This number is divisible by 3 * 3^k = 3^(k + 1) so (10^3^(k+1) - 1)/9 is in the sequence and so (10^3^n - 1) / 9 is in the sequence from which it follows that the sequence is infinite. (End)

Examples

			432 is a term because: 4*3*2=24, 4+3+2=9, 24*9=216 and 432/216 = 2.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[10^6], IntegerQ[ # /(Apply[ Times, IntegerDigits[ # ]] * Apply[ Plus, IntegerDigits[ # ]] ) ] & ]
  • PARI
    isok(n) = my(d=digits(n)); vecprod(d) && (n % (vecsum(d)*vecprod(d)) == 0); \\ Michel Marcus, Jan 23 2019

A049106 Ratio from A049102.

Original entry on oeis.org

1, 2, 37, 14, 1, 1, 2, 2, 88, 926, 247, 104, 114, 4, 196, 754, 214, 9, 289, 571, 47, 32, 2058, 1696, 36, 2428, 68, 3, 2946, 3071, 96, 86, 123, 3, 103, 61, 113, 119, 138, 97, 797, 41153, 30867, 5672, 30892, 644, 1146, 31142, 289, 41893, 499, 896, 109, 33642
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • ARIBAS
    function a049106(a,b: integer); var n,k,j,p,r,d: integer; s: string; begin for n := a to b do s := itoa(n); k := 0; p := 1; for j := 0 to length(s) - 1 do d := atoi(s[j..j]); k : = k + d; p := p*d; end; r := p*k; if r > 0 then if n mod r = 0 then write(n div r,","); end; end; end; end; a049106(0,1220000);

Extensions

More terms from Klaus Brockhaus, Dec 13 2001

A066308 a(n) = (sum of digits of n) * (product of digits of n).

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 0, 6, 16, 30, 48, 70, 96, 126, 160, 198, 0, 12, 30, 54, 84, 120, 162, 210, 264, 324, 0, 20, 48, 84, 128, 180, 240, 308, 384, 468, 0, 30, 70, 120, 180, 250, 330, 420, 520, 630, 0, 42, 96, 162, 240, 330
Offset: 1

Views

Author

Labos Elemer, Dec 13 2001

Keywords

Comments

a(n) can be greater than, less than, or equal to n; see Example section.

Examples

			For n = 12, a(12) = (1 + 2)*(1*2) = 3*2 = 6 < n;
for n = 19, a(19) = (1 + 9)*(1*9) = 90 > n;
for n = 135, a(135) =(1 + 3 + 5)*(1*3*5) = 135 = n.
		

Crossrefs

Programs

  • Mathematica
    asum[x_] := Apply[Plus, IntegerDigits[x]] apro[x_] := Apply[Times, IntegerDigits[x]] a[n]=asum[n]*apro[n]
    sdpd[n_]:=Module[{idn=IntegerDigits[n]},Total[idn]Times@@idn]; Array[ sdpd,70] (* Harvey P. Dale, Dec 31 2011 *)
  • PARI
    a(n) = my(d = digits(n)); vecsum(d) * vecprod(d); \\ Michel Marcus, Feb 24 2017

Extensions

Edited by Jon E. Schoenfield, Jul 09 2018

A023651 Numbers k such that (product of digits of k) * (sum of digits of k) = 2k.

Original entry on oeis.org

0, 2, 15, 24, 1575, 39366
Offset: 1

Views

Author

Jason Earls, Dec 11 2001

Keywords

Comments

Except for k = 0, this sequence is a subsequence of A049101. - Jason Yuen, Feb 26 2024

Crossrefs

Programs

  • Mathematica
    Do[ If[ 2n == Apply[ Times, IntegerDigits[n]] Apply[ Plus, IntegerDigits[n]], Print[n]], {n, 0, 10^7} ]
  • PARI
    isok(n) = if(n, factorback(digits(n)), 0) * sumdigits(n) == 2*n \\ Mohammed Yaseen, Jul 22 2022
    
  • Python
    from math import prod
    def s(n): return sum(map(int, str(n)))
    def p(n): return prod(map(int, str(n)))
    for n in range(0, 10**6):
      if p(n)*s(n)==2*n:
        print(n) # Mohammed Yaseen, Jul 22 2022

Extensions

Offset corrected by Arkadiusz Wesolowski, Oct 17 2012

A066310 Numbers k such that k < (product of digits of k) * (sum of digits of k).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95
Offset: 1

Views

Author

Labos Elemer and Klaus Brockhaus, Dec 13 2001

Keywords

Examples

			14 < (1*4)*(1+4) = 20, so 14 is a term of this sequence.
For n=199, (1+9+9)*1*9*9 = 1539 > 199, so 199 is here.
		

Crossrefs

Programs

  • ARIBAS
    function a066311(a,b: integer); var n,k,j,p,d: integer; s: string; begin for n := a to b do s := itoa(n); k := 0; p := 1; for j := 0 to length(s) - 1 do d := atoi(s[j..j]); k := k + d; p := p*d; end; if n < p*k then write(n,","); end; end; end; a066311(0,120);
    
  • Mathematica
    asum[x_] := Apply[Plus, IntegerDigits[x]] apro[x_] := Apply[Times, IntegerDigits[x]] sz[x_] := asu[x]*apro[x] Do[s=sz[n]; If[Greater[s, n], Print[n]], {n, 1, 200}]
  • PARI
    isok(m) = my(d=digits(m)); m < vecprod(d)*vecsum(d); \\ Michel Marcus, Mar 23 2020

A066309 Numbers k such that k > (product of digits of k) * (sum of digits of k).

Original entry on oeis.org

10, 11, 12, 13, 20, 21, 22, 30, 31, 32, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 130, 131, 132, 133, 134, 140, 141, 142
Offset: 1

Views

Author

Labos Elemer and Klaus Brockhaus, Dec 13 2001

Keywords

Examples

			13 is in the sequence because (1*3)*(1+3) = 3*4 = 12 < 13.
125 is a term because (1*2*5)*(1+2+5) = 10*8 = 80 < 125.
		

Crossrefs

Programs

  • ARIBAS
    function a066312(a,b: integer); var n,k,j,p,d: integer; s: string; begin for n := a to b do s := itoa(n); k := 0; p := 1; for j := 0 to length(s) - 1 do d := atoi(s[j..j]); k := k + d; p := p*d; end; if n > p*k then write(n,","); end; end; end; a066312(0,150);
    
  • Mathematica
    asum[x_] := Apply[Plus, IntegerDigits[x]] apro[x_] := Apply[Times, IntegerDigits[x]] sz[x_] := asu[x]*apro[x] Do[s=sz[n]; If[Greater[n, s], Print[n]], {n, 1, 1000}]
    okQ[n_]:=Module[{idn=IntegerDigits[n]},n> Total[idn]Times@@idn];Select[Range[150],okQ]  (* Harvey P. Dale, Mar 12 2011 *)
  • PARI
    isok(k) = {my(d=digits(k)); k > vecprod(d) * vecsum(d)} \\ Harry J. Smith, Feb 10 2010

A212499 Numbers k that divide the product of digits of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301
Offset: 1

Views

Author

Arkadiusz Wesolowski, May 19 2012

Keywords

Comments

Every integer except zero divides zero.
A050720(2*n) is the number of terms of length n for n >= 2.

Crossrefs

Programs

  • Mathematica
    Union[Range[9], Select[Range[10, 301], DigitCount[#, 10, 0] > 0 &]]
    Select[Range[301], Divisible[Product[i, {i, IntegerDigits[#]}], #] &]

Formula

a(n+9) = A011540(n+1).

A066156 a(n) is the least k>n such that k*n = (product of digits of k) * (sum of digits of k), or 0 if no such k exists.

Original entry on oeis.org

10, 135, 15, 139968, 18, 756, 476, 0, 48, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Robert G. Wilson v, Dec 13 2001

Keywords

Comments

a(n) = 0 for all n > 8: see A049101. - Robert Israel, Aug 18 2020

Crossrefs

Cf. A007953 (sum of digits), A007954 (product of digits).
Cf. A049101.

Programs

  • Mathematica
    Do[ k = n + 1; While[ k*n != Apply[Times, IntegerDigits[k]] Apply[Plus, IntegerDigits[k]], k++ ]; Print[k], {n, 0, 10} ]

Extensions

Edited by Robert Israel, Aug 18 2020
Showing 1-9 of 9 results.