cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A010554 a(n) = phi(phi(n)), where phi is the Euler totient function.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 8, 2, 6, 4, 4, 4, 10, 4, 8, 4, 6, 4, 12, 4, 8, 8, 8, 8, 8, 4, 12, 6, 8, 8, 16, 4, 12, 8, 8, 10, 22, 8, 12, 8, 16, 8, 24, 6, 16, 8, 12, 12, 28, 8, 16, 8, 12, 16, 16, 8, 20, 16, 20, 8, 24, 8
Offset: 1

Views

Author

Keywords

Comments

If n has a primitive root, then it has exactly phi(phi(n)) of them (Burton 1989, p. 188), which means that if p is a prime number, then there are exactly phi(p-1) incongruent primitive roots of p (Burton 1989). - Jonathan Vos Post, Sep 10 2010
See A046144 for the number of primitive roots mod n. - Wolfdieter Lang, Mar 09 2012

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Burton, D. M. "The Order of an Integer Modulo n," "Primitive Roots for Primes," and "Composite Numbers Having Primitive Roots." Sections 8.1-8.3 in Elementary Number Theory, 4th ed. Dubuque, IA: William C. Brown Publishers, pp. 184-205, 1989.

Crossrefs

Programs

A053478 Sum of iterates when phi, A000010, is iterated until fixed point 1.

Original entry on oeis.org

1, 3, 6, 7, 12, 9, 16, 15, 18, 17, 28, 19, 32, 23, 30, 31, 48, 27, 46, 35, 40, 39, 62, 39, 60, 45, 54, 47, 76, 45, 76, 63, 68, 65, 74, 55, 92, 65, 78, 71, 112, 61, 104, 79, 84, 85, 132, 79, 110, 85, 114, 91, 144, 81, 126, 95, 112, 105, 164, 91, 152, 107, 118, 127, 144, 101
Offset: 1

Views

Author

Labos Elemer, Jan 14 2000

Keywords

Comments

For n = 2^w, the sum is 2^(w+1) - 1.

Examples

			If phi is applied repeatedly to n = 91, the iterates {91, 72, 24, 8, 4, 2, 1} are obtained. Their sum is a(91) = 91 + 72 + 24 + 8 + 4 + 2 + 1 = 202.
		

Crossrefs

Programs

  • Haskell
    a053478 = (+ 1) . sum . takeWhile (/= 1) . iterate a000010
    -- Reinhard Zumkeller, Oct 27 2011
    
  • Mathematica
    f[n_] := Plus @@ Drop[ FixedPointList[ EulerPhi, n], -1]; Table[ f[n], {n, 66}] (* Robert G. Wilson v, Dec 16 2004 *)
    f[1] := 1; f[n_] := n + f[EulerPhi[n]]; Table[f[n], {n, 66}] (* Carlos Eduardo Olivieri, May 26 2015 *)
  • PARI
    a(n)=my(s=n);while(n>1,s+=n=eulerphi(n)); s \\ Charles R Greathouse IV, Feb 21 2013

Formula

a(n) = n + a(phi(n)).
a(n) = A092693(n) + n. - Vladeta Jovovic, Jul 02 2004

A049099 a(n) = Euler phi function applied thrice to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 8, 2, 4, 4, 4, 4, 10, 4, 4, 4, 8, 4, 8, 2, 8, 4, 4, 4, 12, 4, 8, 4, 4, 8, 8, 4, 8, 8, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 8, 6, 8, 16, 4, 16, 4, 8, 8, 16, 4, 8, 8, 8, 10, 8, 8, 16, 4, 8, 8, 16
Offset: 1

Views

Author

Keywords

Examples

			n=163: the successive iterates of Euler totient function are 163,162,54,18,6,2,1. The 4th term is 18, when Phi was applied 3 times. So a(163)=18.
		

Crossrefs

Programs

  • Mathematica
    a(n)=Nest[ EulerPhi, n, 3 ]
  • PARI
    A049099(n) = eulerphi(eulerphi(eulerphi(n))); \\ Antti Karttunen, Aug 22 2017

Formula

a(n) = A000010(A010554(n)) = A000010(A000010(A000010(n))). - Antti Karttunen, Aug 22 2017

A049100 a(n) = Euler phi function applied 4 times to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 1, 4, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 4, 8, 2, 8, 2, 4, 4, 8, 2, 4, 4, 4, 4, 4, 4, 8, 2, 4, 4, 8, 4, 8, 4, 4
Offset: 1

Views

Author

Keywords

Examples

			n=163, the successive iterates applying Euler totient function are as follows: 163,162,54,18,6,2,1. The 5th term is 6, when Phi was applied 4 times. So a(163)=6.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(phi(phi(phi(phi(n)))),n=1..130); # Emeric Deutsch, May 14 2006
  • Mathematica
    a(n)=Nest[ EulerPhi, n, 4 ]
  • PARI
    A049100(n) = eulerphi(eulerphi(eulerphi(eulerphi(n)))); \\ Antti Karttunen, Aug 22 2017

Formula

a(n) = phi(phi(phi(phi(n)))) = A000010(A000010(A000010(A000010(n)))) = A010554(A010554(n)) = A000010(A049099(n)).

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 23 2007

A053473 a(n) is the cototient of n (A051953) iterated 5 times.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 2, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 8, 0, 8, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 8, 0, 4, 1
Offset: 1

Views

Author

Labos Elemer, Jan 14 2000

Keywords

Comments

As iteration of A051953 progresses, more and more powers of 2 and 0 appear. The fixed point is 0. Analogous 5th iterates for A000005 or A000010 are A036453 and A049107.
It is assumed here that the value of A051953 at 0 is 0. - Antti Karttunen, Dec 22 2017

Examples

			n=50, n_1 = n - phi(n) = 50 - 20 = 30, n_2 = n_1 - Phi(n_1) = 30 - 8 = 22, n_3 = 22 - Phi(22) = 12, n_4 = n_3 - Phi(n_3) = 12 - 4 = 8, n_5 = 8 - Phi(8) = 4 so the 50th term is 4.
		

Crossrefs

Programs

A068582 Let phi_m(x) = phi(phi(...(phi(x))...)) m times; sequence gives values of k such that phi_5(k) = tau(k).

Original entry on oeis.org

1, 41, 47, 53, 59, 61, 67, 71, 73, 79, 85, 109, 115, 119, 123, 125, 127, 141, 143, 145, 155, 159, 161, 163, 166, 177, 178, 183, 185, 194, 201, 202, 203, 206, 209, 213, 214, 215, 217, 219, 226, 237, 247, 255, 259, 262, 278, 298, 301, 302, 314, 327, 328, 343
Offset: 1

Views

Author

Benoit Cloitre, Mar 26 2002

Keywords

Comments

Last term is a(340) = 24570.
Numbers k such that A049107(k) = A000005(k).

Crossrefs

Programs

  • Mathematica
    Select[Range[343], Nest[EulerPhi, #, 5] === DivisorSigma[0, #] &] (* Amiram Eldar, Jun 12 2022 *)

A162964 a(n) = sigma(sigma(sigma(sigma(sigma(n))))).

Original entry on oeis.org

1, 15, 24, 60, 120, 360, 168, 480, 168, 360, 360, 1170, 480, 1512, 1512, 210, 360, 1170, 728, 1680, 576, 480, 1512, 4800, 210, 1680, 1344, 3276, 992, 2016, 576, 1651, 1560, 3276, 1560, 1512, 1512, 4800, 3276, 4064, 1680, 5952, 1560, 5040, 4800, 2016, 1560, 5040
Offset: 1

Views

Author

Jaroslav Krizek, Jul 19 2009

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); f:=n->sigma(sigma(sigma(sigma(sigma(n))))); [seq(f(n),n=1..100)];
  • Mathematica
    Table[Nest[DivisorSigma[1,#]&,n,5],{n,50}] (* Harvey P. Dale, Apr 19 2013 *)
  • PARI
    A162964(n) = sigma(sigma(sigma(sigma(sigma(n))))); \\ Antti Karttunen, Nov 18 2017

Formula

Extensions

More terms from N. J. A. Sloane, Mar 20 2010
Showing 1-7 of 7 results.