A130534
Triangle T(n,k), 0 <= k <= n, read by rows, giving coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in increasing powers of x. T(n,k) is also the unsigned Stirling number |s(n+1, k+1)|, denoting the number of permutations on n+1 elements that contain exactly k+1 cycles.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 11, 6, 1, 24, 50, 35, 10, 1, 120, 274, 225, 85, 15, 1, 720, 1764, 1624, 735, 175, 21, 1, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0
Triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
n=0: 1
n=1: 1 1
n=2: 2 3 1
n=3: 6 11 6 1
n=4: 24 50 35 10 1
n=5: 120 274 225 85 15 1
n=6: 720 1764 1624 735 175 21 1
n=7: 5040 13068 13132 6769 1960 322 28 1
n=8: 40320 109584 118124 67284 22449 4536 546 36 1
n=9: 362880 1026576 1172700 723680 269325 63273 9450 870 45 1
n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55 1
[Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013]
T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010
T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 1 1 ||0 1 ||0 1 | | 1 1 |
| 2 2 1 ||0 1 1 ||0 0 1 |... = | 2 3 1 |
| 6 6 3 1 ||0 2 2 1 ||0 0 1 1 | | 6 11 6 1 |
|24 24 12 4 1||0 6 6 3 1||0 0 2 2 1| |24 50 35 10 1|
|... ||... ||... | |... |
(End)
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 93-94.
- Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge University Press, 2003, pp. 69-71. [Geoffrey Critzer, May 07 2010]
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 5, pp. 227-251. [From _Johannes W. Meijer_, Oct 07 2009]
- A. Chervov, Decomplexification of the Capelli identities and holomorphic factorization, arxiv 1203.5759 [math.QA], Mar 2012. [_Tom Copeland_, Apr 10 2014]
- FindStat - Combinatorial Statistic Finder, The number of saliances of the permutation, The number of cycles in the cycle decomposition of a permutation.
- Martin Griffiths, Generating Functions for Extended Stirling Numbers of the First Kind, Journal of Integer Sequences, 17 (2014), #14.6.4.
- G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009.
- S. Joni, G. Rota, and B. Sagan, From Sets to Functions: Three Elementary Examples, Discrete Mathematics, vol. 37, no. 2-3, pp. 193-202, 1981. [_Tom Copeland_, Apr 05 2014]
- Matthieu Josuat-Verges, A q-analog of Schläfli and Gould identities on Stirling numbers, Preprint, arXiv:1610.02965 [math.CO], 2016.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Lucas Sá and Antonio M. García-García, The Wishart-Sachdev-Ye-Kitaev model: Q-Laguerre spectral density and quantum chaos, arXiv:2104.07647 [hep-th], 2021.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
- Dennis Walsh, A short note on unsigned Stirling numbers
See
A008275, which is the main entry for these numbers;
A094638 (reversed rows).
The asymptotic expansions lead to
A000142 (n=1),
A000142(n=2; minus a(0)),
A001710 (n=3),
A001715 (n=4),
A001720 (n=5),
A001725 (n=6),
A001730 (n=7),
A049388 (n=8),
A049389 (n=9),
A049398 (n=10),
A051431 (n=11),
A008279 and
A094587.
(End)
-
a130534 n k = a130534_tabl !! n !! k
a130534_row n = a130534_tabl !! n
a130534_tabl = map (map abs) a008275_tabl
-- Reinhard Zumkeller, Mar 18 2013
-
with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration).
BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
-
Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *)
rows = 10;
t = Range[0, rows]!;
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
A173333
Triangle read by rows: T(n, k) = n! / k!, 1 <= k <= n.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 24, 12, 4, 1, 120, 60, 20, 5, 1, 720, 360, 120, 30, 6, 1, 5040, 2520, 840, 210, 42, 7, 1, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 1814400, 604800, 151200, 30240, 5040, 720, 90, 10, 1
Offset: 1
Triangle starts:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1 1
2 2 1
3 6 3 1
4 24 12 4 1
5 120 60 20 5 1
6 720 360 120 30 6 1
7 5040 2520 840 210 42 7 1
8 40320 20160 6720 1680 336 56 8 1
9 362880 181440 60480 15120 3024 504 72 9 1
10 3628800 1814400 604800 151200 30240 5040 720 90 10 1
... - _Wolfdieter Lang_, Jun 27 2012
1 < k <= n: T(n,k) = T(n,k-1) / k.
1 <= k <= n: T(n+1,k) =
A119741(n,n-k+1).
1 <= k <= n: T(n+1,k+1) =
A162995(n,k).
-
a173333 n k = a173333_tabl !! (n-1) !! (k-1)
a173333_row n = a173333_tabl !! (n-1)
a173333_tabl = map fst $ iterate f ([1], 2)
where f (row, i) = (map (* i) row ++ [1], i + 1)
-- Reinhard Zumkeller, Jul 04 2012
-
Table[n!/k!, {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 01 2019 *)
A245334
A factorial-like triangle read by rows: T(0,0) = 1; T(n+1,0) = T(n,0)+1; T(n+1,k+1) = T(n,0)*T(n,k), k=0..n.
Original entry on oeis.org
1, 2, 1, 3, 4, 2, 4, 9, 12, 6, 5, 16, 36, 48, 24, 6, 25, 80, 180, 240, 120, 7, 36, 150, 480, 1080, 1440, 720, 8, 49, 252, 1050, 3360, 7560, 10080, 5040, 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320, 10, 81, 576, 3528, 18144, 75600, 241920, 544320
Offset: 0
. 0: 1;
. 1: 2, 1;
. 2: 3, 4, 2;
. 3: 4, 9, 12, 6;
. 4: 5, 16, 36, 48, 24;
. 5: 6, 25, 80, 180, 240, 120;
. 6: 7, 36, 150, 480, 1080, 1440, 720;
. 7: 8, 49, 252, 1050, 3360, 7560, 10080, 5040;
. 8: 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320;
. 9: 10, 81, 576, 3528, 18144, 75600, 241920, 544320, 725760, 362880.
Cf.
A000142,
A001715,
A001720,
A001725,
A001730,
A049388,
A049389,
A049398,
A051431,
A052849,
A070960.
-
a245334 n k = a245334_tabl !! n !! k
a245334_row n = a245334_tabl !! n
a245334_tabl = iterate (\row@(h:_) -> (h + 1) : map (* h) row) [1]
-
Table[(n!)/((n - k)!)*(n + 1 - k), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 10 2017 *)
A051564
Second unsigned column of triangle A051523.
Original entry on oeis.org
0, 1, 21, 362, 6026, 101524, 1763100, 31813200, 598482000, 11752855200, 240947474400, 5154170774400, 114942011990400, 2669517204076800, 64496340380102400, 1619153396908185600, 42188624389562112000
Offset: 0
- Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051523.
Cf.
A049398 (first unsigned column).
-
f[n_] := n!*Sum[(-1)^k*Binomial[-10, k]/(n - k), {k, 0, n - 1}]; Array[f, 17, 0]
Range[0, 16]! CoefficientList[ Series[-Log[(1 - x)]/(1 - x)^10, {x, 0, 16}], x]
(* Or, using elementary symmetric functions: *)
f[k_] := k + 9; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}]
(* Clark Kimberling, Dec 29 2011 *)
A051431
a(n) = (n+10)!/10!.
Original entry on oeis.org
1, 11, 132, 1716, 24024, 360360, 5765760, 98017920, 1764322560, 33522128640, 670442572800, 14079294028800, 309744468633600, 7124122778572800, 170978946685747200, 4274473667143680000, 111136315345735680000, 3000680514334863360000, 84019054401376174080000
Offset: 0
A094645
Triangle of generalized Stirling numbers of the first kind.
Original entry on oeis.org
1, -1, 1, 0, -1, 1, 0, -1, 0, 1, 0, -2, -1, 2, 1, 0, -6, -5, 5, 5, 1, 0, -24, -26, 15, 25, 9, 1, 0, -120, -154, 49, 140, 70, 14, 1, 0, -720, -1044, 140, 889, 560, 154, 20, 1, 0, -5040, -8028, -64, 6363, 4809, 1638, 294, 27, 1, 0, -40320, -69264, -8540, 50840, 44835, 17913, 3990, 510, 35, 1
Offset: 0
Triangle begins
1;
-1, 1;
0, -1, 1;
0, -1, 0, 1;
0, -2, -1, 2, 1;
0, -6, -5, 5, 5, 1;
0, -24, -26, 15, 25, 9, 1;
...
Recurrence:
-2 = T(4,1) = T(3,0) + (4-2)*T(3,1) = 0 + 2*(-1).
Row polynomials:
s(3,x) = -x+x^3 = (x-1)*s1(2,x) = (x-1)*(x+x^2).
s(3,x) = (x-1)*s(2,x+1) = (x-1)*(-(x+1)+(x+1)^2).
s(3,x) - s(3,x-1) = -x+x^3 -(-(x-1)+(x-1)^3) = 3*(-x+x^2) = 3*s(2,x).
- S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
-
A094645_row := n -> seq((-1)^(n-k)*coeff(expand(pochhammer(x-n+2, n)), x, k), k=0..n): seq(print(A094645_row(n)), n=0..6); # Peter Luschny, May 16 2013
-
t[n_, k_] /; n >= k >= 0 := t[n, k] = t[n-1, k-1] + (n-2)*t[n-1, k]; t[n_, k_] /; n < k = 0; t[, -1] = 0; t[0, 0] = 1; Flatten[ Table[ t[n, k], {n, 0, 10}, {k, 0, n}] ] (* _Jean-François Alcover, Sep 29 2011, after recurrence *);
Table[CoefficientList[t*(t-1)*Sum[(-1)^(n+m)*t^(m-1)*StirlingS1[n,m],{m,n}],t],{n,1,7}] (* Wouter Meeussen, May 15 2012 *)
A051380
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -9, 1, 90, -19, 1, -990, 299, -30, 1, 11880, -4578, 659, -42, 1, -154440, 71394, -13145, 1205, -55, 1, 2162160, -1153956, 255424, -30015, 1975, -69, 1, -32432400, 19471500, -4985316, 705649, -59640, 3010, -84, 1, 518918400, -343976400, 99236556, -16275700, 1659889, -107800, 4354, -100, 1
Offset: 0
{1}; {-9,1}; {90,-19,1}; {-990,299,-30,1}; ... s(2,x)= 90-19*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
The first (m=0) column sequence is:
A049389. Row sums (signed triangle):
A049388(n)*(-1)^n. Row sums (unsigned triangle):
A049398(n).
-
a051380 n k = a051380_tabl !! n !! k
a051380_row n = a051380_tabl !! n
a051380_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 9)
-- Reinhard Zumkeller, Mar 12 2014
-
a[n_, m_] := Pochhammer[m + 1, n - m] SeriesCoefficient[Log[1 + x]^m/(1 + x)^9, {x, 0, n}];
Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)
A051523
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -10, 1, 110, -21, 1, -1320, 362, -33, 1, 17160, -6026, 791, -46, 1, -240240, 101524, -17100, 1435, -60, 1, 3603600, -1763100, 358024, -38625, 2335, -75, 1, -57657600, 31813200, -7491484, 976024, -75985, 3535, -91, 1, 980179200, -598482000, 159168428, -24083892, 2267769, -136080, 5082, -108, 1
Offset: 0
{1}; {-10,1}; {110,-21,1}; {-1320,362,-331}; ... s(2,x)= 110-21*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
The first (m=0) unsigned column sequence is
A049398. Row sums (signed triangle):
A049389(n)*(-1)^n. Row sums (unsigned triangle):
A051431(n).
-
a051523 n k = a051523_tabl !! n !! k
a051523_row n = a051523_tabl !! n
a051523_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 10)
-- Reinhard Zumkeller, Mar 12 2014
-
a[n_, m_] := Pochhammer[m + 1, n - m] SeriesCoefficient[Log[1 + x]^m/(1 + x)^10, {x, 0, n}];
Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)
A167569
The lower left triangle of the ED2 array A167560.
Original entry on oeis.org
1, 2, 4, 6, 16, 32, 24, 80, 192, 384, 120, 480, 1344, 3072, 6144, 720, 3360, 10752, 27648, 61440, 122880, 5040, 26880, 96768, 276480, 675840, 1474560, 2949120, 40320, 241920, 967680, 3041280, 8110080, 19169280, 41287680, 82575360
Offset: 1
The first few triangle rows are:
[1]
[2, 4]
[6, 16, 32]
[24, 80, 192, 384]
[120, 480, 1344, 3072, 6144]
[720, 3360, 10752, 27648, 61440, 122880]
-
a := proc(n, m): 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 23 2012
-
Flatten[Table[4^(m - 1)*(m - 1)!*(n + m - 1)!/(2*m - 1)!, {n, 1, 50}, {m, n}]] (* G. C. Greubel, Jun 16 2016 *)
A161742
Third left hand column of the RSEG2 triangle A161739.
Original entry on oeis.org
1, 4, 13, 30, -14, -504, 736, 44640, -104544, -10644480, 33246720, 5425056000, -20843695872, -5185511654400, 23457840537600, 8506857655296000, -44092609863966720, -22430879475779174400, 130748316971139072000
Offset: 2
Equals third left hand column of
A161739 (RSEG2 triangle).
A008955 is a central factorial number triangle.
-
nmax:=21; for n from 0 to nmax do A008955(n,0):=1 end do: for n from 0 to nmax do A008955(n,n):=(n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n,m):= A008955(n-1,m-1)*n^2+A008955(n-1,m) end do: end do: for n from 1 to nmax do A028246(n,1):=1 od: for n from 1 to nmax do A028246(n,n):=(n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n,m):=m*A028246(n-1,m)+(m-1)*A028246(n-1,m-1) od: od: for n from 2 to nmax do a(n):=sum(((-1)^k/((k+1)!*(k+2)!)) *(n!)*A028246(n,k+2)* A008955(k+1,k),k=0..n-2) od: seq(a(n),n=2..nmax);
Showing 1-10 of 16 results.
Next
Comments