Original entry on oeis.org
0, 3, 9, 17, 31, 45, 63, 87, 111, 139, 173, 205, 243, 287, 329, 373, 435, 487, 535, 607, 663, 727, 809, 877, 955, 1037, 1117, 1205, 1293, 1385, 1475, 1595, 1695, 1783, 1913, 2005, 2123, 2267, 2379, 2487, 2629, 2763, 2893, 3041, 3177, 3313, 3473, 3625, 3761
Offset: 1
-
[n eq 1 select 0 else (&+[EulerPhi(2*j): j in [1..2*(n-1)]]) : n in [1..60] ]; // G. C. Greubel, Dec 03 2023
-
A190815 := proc(n) option remember: if(n=1)then return 0:fi: return procname(n-1)+numtheory[phi](4*n-6)+numtheory[phi](4*n-4): end: seq(A190815(n),n=1..49); # Nathaniel Johnston, May 24 2011
-
a[n_] := Sum[EulerPhi[2k], {k, 1, 2n-2}];
Table[a[n], {n, 1, 49}] (* Jean-François Alcover, Apr 16 2023 *)
-
[sum(euler_phi(2*j) for j in range(1,2*n-1)) for n in range(1,61)] # G. C. Greubel, Dec 03 2023
Original entry on oeis.org
0, 1, 3, 5, 9, 13, 17, 23, 31, 37, 45, 55, 63, 75, 87, 95, 111, 127, 139, 157, 173, 185, 205
Offset: 0
A068773
Alternating sum phi(1) - phi(2) + phi(3) - phi(4) + ... + ((-1)^(n+1))*phi(n).
Original entry on oeis.org
1, 0, 2, 0, 4, 2, 8, 4, 10, 6, 16, 12, 24, 18, 26, 18, 34, 28, 46, 38, 50, 40, 62, 54, 74, 62, 80, 68, 96, 88, 118, 102, 122, 106, 130, 118, 154, 136, 160, 144, 184, 172, 214, 194, 218, 196, 242, 226, 268, 248, 280, 256, 308, 290, 330, 306, 342, 314, 372, 356
Offset: 1
a(3) = phi(1) - phi(2) + phi(3) = 1 - 1 + 2 = 2.
-
with(numtheory): seq(add((-1)^(k+1)*phi(k),k=1..n), n=1..80); # Ridouane Oudra, Mar 22 2024
-
Accumulate[Array[(-1)^(# + 1) * EulerPhi[#] &, 100]] (* Amiram Eldar, Oct 14 2022 *)
-
a068773(m)=local(s,n); s=0; for(n=1,m, if(n%2==0,s=s-eulerphi(n),s=s+eulerphi(n)); print1(s,","))
-
# uses code from A002088 and A049690
def A068773(n): return A002088(n)-(A049690(n>>1)<<1) # Chai Wah Wu, Aug 04 2024
A372619
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = 1/(phi(k)) * Sum_{j=1..n} phi(k*j).
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 2, 5, 6, 1, 3, 5, 9, 10, 1, 2, 5, 7, 13, 12, 1, 3, 4, 9, 11, 17, 18, 1, 2, 6, 6, 13, 14, 23, 22, 1, 3, 4, 10, 11, 17, 20, 31, 28, 1, 2, 5, 6, 14, 13, 23, 24, 37, 32, 1, 3, 5, 9, 10, 20, 19, 31, 33, 45, 42, 1, 2, 5, 7, 13, 12, 26, 23, 37, 37, 55, 46
Offset: 1
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 3, 2, 3, 2, 3, 2, 3, 2, 3, ...
4, 5, 5, 5, 4, 6, 4, 5, 5, 5, ...
6, 9, 7, 9, 6, 10, 6, 9, 7, 9, ...
10, 13, 11, 13, 11, 14, 10, 13, 11, 14, ...
12, 17, 14, 17, 13, 20, 12, 17, 14, 18, ...
18, 23, 20, 23, 19, 26, 19, 23, 20, 24, ...
-
T[n_, k_] := Sum[EulerPhi[k*j], {j, 1, n}] / EulerPhi[k]; Table[T[k, n-k+1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2024 *)
-
T(n, k) = sum(j=1, n, eulerphi(k*j))/eulerphi(k);
A099957
a(n) = Sum_{k=0..n-1} phi(2k+1).
Original entry on oeis.org
1, 3, 7, 13, 19, 29, 41, 49, 65, 83, 95, 117, 137, 155, 183, 213, 233, 257, 293, 317, 357, 399, 423, 469, 511, 543, 595, 635, 671, 729, 789, 825, 873, 939, 983, 1053, 1125, 1165, 1225, 1303, 1357, 1439, 1503, 1559, 1647, 1719, 1779, 1851, 1947
Offset: 1
A372606
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} phi(k*j).
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 2, 4, 5, 6, 4, 6, 10, 9, 10, 2, 8, 10, 14, 13, 12, 6, 6, 16, 18, 22, 17, 18, 4, 12, 12, 24, 26, 28, 23, 22, 6, 12, 24, 20, 44, 34, 40, 31, 28, 4, 12, 20, 36, 28, 52, 46, 48, 37, 32, 10, 12, 30, 36, 60, 40, 76, 62, 66, 45, 42, 4, 20, 20, 42, 52, 72, 52, 92, 74, 74, 55, 46
Offset: 1
Square array T(n,k) begins:
1, 1, 2, 2, 4, 2, 6, ...
2, 3, 4, 6, 8, 6, 12, ...
4, 5, 10, 10, 16, 12, 24, ...
6, 9, 14, 18, 24, 20, 36, ...
10, 13, 22, 26, 44, 28, 60, ...
12, 17, 28, 34, 52, 40, 72, ...
18, 23, 40, 46, 76, 52, 114, ...
-
T[n_, k_] := Sum[EulerPhi[k*j], {j, 1, n}]; Table[T[k, n-k+1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, May 10 2024 *)
-
T(n, k) = sum(j=1, n, eulerphi(k*j));
A099958
(1/2)*number of distinct angular positions under which an observer positioned at the center of an edge of a square lattice can see the (2n)X(2n-1) points symmetrically surrounding his position.
Original entry on oeis.org
1, 5, 13, 23, 37, 55, 75, 95, 127, 157, 185, 227, 263, 305, 357, 403, 455, 511, 571, 631, 703, 769, 833, 923, 997, 1069, 1169, 1245, 1329, 1443, 1535, 1631, 1743, 1849, 1957, 2075, 2195, 2307, 2439, 2565, 2683, 2845, 2957, 3097, 3265, 3385
Offset: 1
A106481
An Euler phi transform of 1/(1 - x^2).
Original entry on oeis.org
0, 1, 1, 3, 3, 7, 5, 13, 9, 19, 13, 29, 17, 41, 23, 49, 31, 65, 37, 83, 45, 95, 55, 117, 63, 137, 75, 155, 87, 183, 95, 213, 111, 233, 127, 257, 139, 293, 157, 317, 173, 357, 185, 399, 205, 423, 227, 469, 243, 511, 263, 543, 287, 595, 305, 635, 329, 671, 357, 729
Offset: 0
A274401
Number of balanced linear 4-partitions of the n X n grid.
Original entry on oeis.org
0, 1, 8, 3, 16, 7, 32, 13, 48, 19, 80, 29, 96, 41, 144, 49, 176, 65, 224, 83, 256, 95, 336, 117, 368, 137, 464, 155, 512, 183, 576, 213, 640, 233, 768, 257, 816, 293, 960, 317, 1024, 357, 1120, 399, 1200, 423, 1376, 469, 1440
Offset: 1
A083239
First order recursion: a(0) = 1; a(n) = phi(n) - a(n-1) = A000010(n) - a(n-1).
Original entry on oeis.org
1, 0, 1, 1, 1, 3, -1, 7, -3, 9, -5, 15, -11, 23, -17, 25, -17, 33, -27, 45, -37, 49, -39, 61, -53, 73, -61, 79, -67, 95, -87, 117, -101, 121, -105, 129, -117, 153, -135, 159, -143, 183, -171, 213, -193, 217, -195, 241, -225, 267, -247, 279, -255, 307, -289, 329, -305, 341, -313, 371, -355, 415, -385, 421, -389, 437, -417
Offset: 0
Showing 1-10 of 14 results.
Comments