A051037 5-smooth numbers, i.e., numbers whose prime divisors are all <= 5.
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405
Offset: 1
Examples
From _Gus Wiseman_, May 21 2021: (Start) The sequence of terms together with their prime indices begins: 1: {} 25: {3,3} 2: {1} 27: {2,2,2} 3: {2} 30: {1,2,3} 4: {1,1} 32: {1,1,1,1,1} 5: {3} 36: {1,1,2,2} 6: {1,2} 40: {1,1,1,3} 8: {1,1,1} 45: {2,2,3} 9: {2,2} 48: {1,1,1,1,2} 10: {1,3} 50: {1,3,3} 12: {1,1,2} 54: {1,2,2,2} 15: {2,3} 60: {1,1,2,3} 16: {1,1,1,1} 64: {1,1,1,1,1,1} 18: {1,2,2} 72: {1,1,1,2,2} 20: {1,1,3} 75: {2,3,3} 24: {1,1,1,2} 80: {1,1,1,1,3} (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Benoit Cloitre, Plot of abs(f(n)-s(n)) vs its mean values (blue) and vs loglog(n) (red).
- M. J. Dominus, Infinite Lists in Perl.
- Deborah Howard and Malcolm Longair, Harmonic Proportion and Palladio's "Quattro Libri", Journal of the Society of Architectural Historians (1982) 41 (2): 116-143.
- Vaclav Kotesovec, Plot of a(n) / (exp((6*log(2)*log(3)*log(5)*n)^(1/3))/sqrt(30)) for n = 1..1200000
- Rosetta Code, A collection of computer codes to compute 5-smooth numbers.
- Raphael Schumacher, The Formula for the Distribution of the 3-Smooth Numbers, 5-Smooth, 7-Smooth and all other Smooth Numbers, arXiv:1608.06928 [math.NT], 2016.
- Sci.math, Ugly numbers.
- Carl Veller, Martin A. Nowak and Charles C. Davis, Extended flowering intervals of bamboos evolved by discrete multiplication, Ecology Letters, 18 (2015), 653-659.
- Eric Weisstein's World of Mathematics, Smooth Number.
- Wikipedia, Regular number.
- Wikipedia, Talk:Regular number. Includes a discussion of the name.
- Wikipedia, Størmer's theorem.
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a051037 n = a051037_list !! (n-1) a051037_list = f $ singleton 1 where f s = y : f (insert (5 * y) $ insert (3 * y) $ insert (2 * y) s') where (y, s') = deleteFindMin s -- Reinhard Zumkeller, May 16 2015
-
Magma
[n: n in [1..500] | PrimeDivisors(n) subset [2,3,5]]; // Bruno Berselli, Sep 24 2012
-
Maple
A051037 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+1 do numtheory[factorset](a) minus {2, 3,5 } ; if % = {} then return a; end if; end do: end if; end proc: seq(A051037(n),n=1..100) ; # R. J. Mathar, Nov 05 2017
-
Mathematica
mx = 405; Sort@ Flatten@ Table[ 2^a*3^b*5^c, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}] (* Or *) Select[ Range@ 405, Last@ Map[First, FactorInteger@ #] < 7 &] (* Robert G. Wilson v *) With[{nn=10},Select[Union[Times@@@Flatten[Table[Tuples[{2,3,5},n],{n,0,nn}],1]],#<=2^nn&]] (* Harvey P. Dale, Feb 28 2022 *)
-
PARI
test(n)= {m=n; forprime(p=2,5, while(m%p==0,m=m/p)); return(m==1)} for(n=1,500,if(test(n),print1(n",")))
-
PARI
a(n)=local(m); if(n<1,0,n=a(n-1); until(if(m=n, forprime(p=2,5, while(m%p==0,m/=p)); m==1),n++); n)
-
PARI
list(lim)=my(v=List(),s,t); for(i=0,logint(lim\=1,5), t=5^i; for(j=0,logint(lim\t,3), s=t*3^j; while(s<=lim, listput(v,s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Sep 21 2011; updated Sep 19 2016
-
PARI
smooth(P:vec,lim)={ my(v=List([1]),nxt=vector(#P,i,1),indx,t); while(1, t=vecmin(vector(#P,i,v[nxt[i]]*P[i]),&indx); if(t>lim,break); if(t>v[#v],listput(v,t)); nxt[indx]++); Vec(v) }; smooth([2,3,5], 1e4) \\ Charles R Greathouse IV, Dec 03 2013
-
PARI
is_A051037(n)=n<7||vecmax(factor(n,6)[, 1])<7 \\ M. F. Hasler, Jan 16 2015
-
Python
def isok(n): while n & 1 == 0: n >>= 1 while n % 3 == 0: n //= 3 while n % 5 == 0: n //= 5 return n == 1 # Darío Clavijo, Dec 30 2022
-
Python
from sympy import integer_log def A051037(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,5)[0]+1): for j in range(integer_log(y:=x//5**i,3)[0]+1): c -= (y//3**j).bit_length() return c return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024
-
Python
# faster for initial segment of sequence import heapq from itertools import islice def A051037gen(): # generator of terms v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5] while True: v = heapq.heappop(h) if v != oldv: yield v oldv = v for p in psmooth_primes: heapq.heappush(h, v*p) print(list(islice(A051037gen(), 65))) # Michael S. Branicky, Sep 17 2024
Formula
Let s(n) = Card(k | a(k)Benoit Cloitre, Dec 30 2001
The characteristic function of this sequence is given by:
Sum_{n>=1} x^a(n) = Sum_{n>=1} -Möbius(30*n)*x^n/(1-x^n). - Paul D. Hanna, Sep 18 2011
a(n) = A143207(n) / 30. - Reinhard Zumkeller, Sep 13 2011
A204455(15*a(n)) = 15, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
A006530(a(n)) <= 5. - Reinhard Zumkeller, May 16 2015
Sum_{n>=1} 1/a(n) = Product_{primes p <= 5} p/(p-1) = (2*3*5)/(1*2*4) = 15/4. - Amiram Eldar, Sep 22 2020
Comments