A051674 a(n) = prime(n)^prime(n).
4, 27, 3125, 823543, 285311670611, 302875106592253, 827240261886336764177, 1978419655660313589123979, 20880467999847912034355032910567, 2567686153161211134561828214731016126483469, 17069174130723235958610643029059314756044734431
Offset: 1
Examples
a(1) = 2^2 = 4. a(2) = 3^3 = 27. a(3) = 5^5 = 3125.
References
- J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 740 pp. 95; 312, Ellipses Paris 2004.
Links
- T. D. Noe, Table of n, a(n) for n = 1..40
- David Beckwith, Problem 11158, American Mathematical Monthly, Vol. 112, No. 5 (May 2005), p. 468.
- Jurij Kovic, The Arithmetic Derivative and Antiderivative, Journal of Integer Sequences, Vol. 15 (2012), #12.3.8.
Crossrefs
Programs
-
Haskell
a051674_list = map (\p -> p ^ p) a000040_list -- Reinhard Zumkeller, Jan 21 2012
-
Magma
[p^p: p in PrimesUpTo(30)]; // Vincenzo Librandi, Mar 27 2014
-
Maple
A051674:=n->ithprime(n)^ithprime(n): seq(A051674(n), n=1..10); # Wesley Ivan Hurt, Jun 25 2016
-
Mathematica
Array[Prime[ # ]^Prime[ # ] &, 12] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *) #^#&/@Prime[Range[10]] (* Harvey P. Dale, May 17 2024 *)
-
PARI
a(n)=n=prime(n);n^n \\ Charles R Greathouse IV, Mar 20 2013
-
Python
from gmpy2 import mpz [mpz(prime(n))**mpz(prime(n)) for n in range(1,100)] # Chai Wah Wu, Jul 28 2014
Formula
Sum_{n>=1} 1/a(n) = A094289. - Amiram Eldar, Oct 13 2020
Comments