A052551 Expansion of 1/((1 - x)*(1 - 2*x^2)).
1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, 127, 127, 255, 255, 511, 511, 1023, 1023, 2047, 2047, 4095, 4095, 8191, 8191, 16383, 16383, 32767, 32767, 65535, 65535, 131071, 131071, 262143, 262143, 524287, 524287, 1048575, 1048575, 2097151, 2097151
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 488
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
Crossrefs
Programs
-
GAP
Flat(List([1..21],n->[2^n-1,2^n-1])); # Muniru A Asiru, Oct 16 2018
-
Magma
[2^Floor(n/2)-1: n in [2..50]]; // Vincenzo Librandi, Aug 16 2011
-
Maple
spec := [S,{S=Prod(Sequence(Prod(Z,Union(Z,Z))),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
Table[StirlingS2[Floor[n/2] + 2, 2], {n, 0, 50}] (* Robert A. Russell, Dec 20 2017 *) Drop[LinearRecurrence[{1, 2, -2}, {0, 1, 1}, 50], 1] (* Robert A. Russell, Oct 14 2018 *) CoefficientList[Series[1/((1-x)*(1-2*x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *) 2^(1+Floor[(Range[0,50])/2])-1 (* Federico Provvedi, Nov 22 2018 *) ((-1)^#(Sqrt[2]-1)+Sqrt[2]+1)2^((#-1)/2)-1&@Range[0, 50] (* Federico Provvedi, Nov 23 2018 *)
-
PARI
x='x+O('x^50); Vec(1/((1-x)*(1-2*x^2))) \\ Altug Alkan, Mar 19 2018
-
Sage
[2^(floor(n/2)) -1 for n in (2..50)] # G. C. Greubel, Mar 04 2019
Formula
G.f.: 1/((1 - x)*(1 - 2*x^2)).
Recurrence: a(1) = 1, a(0) = 1, -2*a(n) - 1 + a(n+2) = 0.
a(n) = -1 + Sum((1/2)*(1 + 2*alpha)*alpha^(-1 - n)) where the sum is over alpha = the two roots of -1 + 2*x^2.
a(n) = A016116(n+2) - 1. - R. J. Mathar, Jun 15 2009
a(n) = A060546(n+1) - 1. - Filip Zaludek, Dec 10 2016
From Robert A. Russell, Oct 15 2018: (Start)
a(n-2) = S2(floor(n/2)+1,2), where S2 is the Stirling subset number A008277.
From Federico Provvedi, Nov 22 2018: (Start)
a(n) = 2^( 1 + floor(n/2) ) - 1.
a(n) = ( (-1)^n*(sqrt(2)-1) + sqrt(2) + 1 ) * 2^( (n - 1)/2 ) - 1. (End)
E.g.f.: 2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) - cosh(x) - sinh(x). - Franck Maminirina Ramaharo, Nov 23 2018
Extensions
More terms from James Sellers, Jun 06 2000
Comments