A053141 a(0)=0, a(1)=2 then a(n) = a(n-2) + 2*sqrt(8*a(n-1)^2 + 8*a(n-1) + 1).
0, 2, 14, 84, 492, 2870, 16730, 97512, 568344, 3312554, 19306982, 112529340, 655869060, 3822685022, 22280241074, 129858761424, 756872327472, 4411375203410, 25711378892990, 149856898154532, 873430010034204, 5090723162050694, 29670908962269962, 172934730611569080
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- A. Behera and G. K. Panda, On the Square Roots of Triangular Numbers, Fib. Quart., 37 (1999), pp. 98-105.
- Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.
- P. Catarino, H. Campos, and P. Vasco, On some identities for balancing and cobalancing numbers, Annales Mathematicae et Informaticae, 45 (2015) pp. 11-24.
- Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4.
- aBa Mbirika, Janee Schrader, and Jürgen Spilker, Pell and Associated Pell Braid Sequences as GCDs of Sums of k Consecutive Pell, Balancing, and Related Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.6.4.
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
- G. K. Panda, Sequence balancing and cobalancing numbers, Fib. Q., Vol. 45, No. 3 (2007), 265-271. See p. 266.
- Michael Penn, (co) balancing numbers, YouTube video, 2022.
- Robert Phillips, Polynomials of the form 1+4ke+4ke^2, 2008.
- Robert Phillips, A triangular number result, 2009.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2021.
- Burkard Polster, Nice merging together, Mathologer video (2015).
- B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
- A. Tekcan, M. Tayat, and M. E. Ozbek, The diophantine equation 8x^2-y^2+8x(1+t)+(2t+1)^2=0 and t-balancing numbers, ISRN Combinatorics, Volume 2014, Article ID 897834, 5 pages.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
Crossrefs
Programs
-
Haskell
a053141 n = a053141_list !! n a053141_list = 0 : 2 : map (+ 2) (zipWith (-) (map (* 6) (tail a053141_list)) a053141_list) -- Reinhard Zumkeller, Jan 10 2012
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!(2*x/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018 -
Maple
A053141 := proc(n) option remember; if n <= 1 then op(n+1,[0,2]) ; else 6*procname(n-1)-procname(n-2)+2 ; end if; end proc: # R. J. Mathar, Feb 05 2016
-
Mathematica
Join[{a=0,b=1}, Table[c=6*b-a+1; a=b; b=c, {n,60}]]*2 (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *) a[n_] := Floor[1/8*(2+Sqrt[2])*(3+2*Sqrt[2])^n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 28 2013 *) Table[(Fibonacci[2n + 1, 2] - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
-
PARI
concat(0,Vec(2/(1-x)/(1-6*x+x^2)+O(x^30))) \\ Charles R Greathouse IV, May 14 2012
-
PARI
{x=1+sqrt(2); y=1-sqrt(2); P(n) = (x^n - y^n)/(x-y)}; a(n) = round((P(2*n+1) - 1)/2); for(n=0, 30, print1(a(n), ", ")) \\ G. C. Greubel, Jul 15 2018
-
Sage
[(lucas_number1(2*n+1, 2, -1)-1)/2 for n in range(30)] # G. C. Greubel, Apr 27 2020
Formula
a(n) = (A001653(n)-1)/2 = 2*A053142(n) = A011900(n)-1. [Corrected by Pontus von Brömssen, Sep 11 2024]
a(n) = 6*a(n-1) - a(n-2) + 2, a(0) = 0, a(1) = 2.
G.f.: 2*x/((1-x)*(1-6*x+x^2)).
Let c(n) = A001109(n). Then a(n+1) = a(n)+2*c(n+1), a(0)=0. This gives a generating function (same as existing g.f.) leading to a closed form: a(n) = (1/8)*(-4+(2+sqrt(2))*(3+2*sqrt(2))^n + (2-sqrt(2))*(3-2*sqrt(2))^n). - Bruce Corrigan (scentman(AT)myfamily.com), Oct 30 2002
a(n) = 2*Sum_{k = 0..n} A001109(k). - Mario Catalani (mario.catalani(AT)unito.it), Mar 22 2003
For n>=1, a(n) = 2*Sum_{k=0..n-1} (n-k)*A001653(k). - Charlie Marion, Jul 01 2003
For n and j >= 1, A001109(j+1)*A001652(n) - A001109(j)*A001652(n-1) + a(j) = A001652(n+j). - Charlie Marion, Jul 07 2003
From Antonio Alberto Olivares, Jan 13 2004: (Start)
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).
a(n) = -(1/2) - (1-sqrt(2))/(4*sqrt(2))*(3-2*sqrt(2))^n + (1+sqrt(2))/(4*sqrt(2))*(3+2*sqrt(2))^n. (End)
a(n) = sqrt(2)*cosh((2*n+1)*log(1+sqrt(2)))/4 - 1/2 = (sqrt(1+4*A029549)-1)/2. - Bill Gosper, Feb 07 2010 [typo corrected by Vaclav Kotesovec, Feb 05 2016]
From Charlie Marion, Oct 18 2004: (Start)
Let G(n,m) = (2*m+1)*a(n)+ m and H(n,m) = (2*m+1)*b(n)+m where b(n) is from the sequence A001652 and let T(a) = a*(a+1)/2. Then T(G(n,m)) + T(m) = 2*T(H(n,m)). - Kenneth J Ramsey, Aug 16 2007
Let S(n) equal the average of two adjacent terms of G(n,m) as defined immediately above and B(n) be one half the difference of the same adjacent terms. Then for T(i) = triangular number i*(i+1)/2, T(S(n)) - T(m) = B(n)^2 (setting m = 0 gives the square triangular numbers). - Kenneth J Ramsey, Aug 16 2007
a(n) = (a(n-1)*(a(n-1) - 2))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
a(n) = (ChebyshevU(n, 3) - ChebyshevU(n-1, 3) - 1)/2 = (Pell(2*n+1) - 1)/2. - G. C. Greubel, Apr 27 2020
E.g.f.: (exp(3*x)*(2*cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)) - 2*exp(x))/4. - Stefano Spezia, Mar 16 2024
Extensions
Name corrected by Zak Seidov, Apr 11 2011
Comments