cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002961 Numbers k such that k and k+1 have same sum of divisors.

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1634, 2685, 2974, 4364, 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 64665, 74918, 79826, 79833, 84134, 92685, 109214, 111506, 116937, 122073, 138237, 147454, 161001, 162602, 166934
Offset: 1

Views

Author

Keywords

Comments

For the values of n < 2*10^10 in this sequence, sigma(n)/n is between 1.5 and 2.25. - T. D. Noe, Sep 17 2007
Whether this sequence is infinite is an unsolved problem, as noted in many of the references and links. - Franklin T. Adams-Watters, Jan 25 2010
144806446575 is the first term for which sigma(n)/n > 2.25. All n < 10^12 have sigma(n)/n > 3/2. - T. D. Noe, Feb 18 2010
A053222(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2011
Numbers n such that n + 1 = antisigma(n+1) - antisigma(n), where antisigma(n) = A024816(n) = the sum of the non-divisors of n that are between 1 and n. Example for n = 14: 15 = antisigma(15) - antisigma(14) = 96 - 81. - Jaroslav Krizek, Nov 10 2013
Up to 10^13, the value of the sigma(n)/n varies between 1417728000/945151999 (attained for n = 2835455997) and 2913242112/1263730145 (for n = 5174974943775). - Giovanni Resta, Feb 26 2014
Also numbers n such that A242962(n) = A242962(n+1), with A242962(n) = T(n) mod antisigma(n), where T(n) = A000217(n) is the n-th triangular number and antisigma(n) = A024816(n) is the sum of numbers less than n which do not divide n. - Jaroslav Krizek, May 29 2014
Guy and Shanks construct 5559060136088313 as a term of this sequence. - Michel Marcus, Dec 29 2014
Note that in all cases, n and n+1 are composite. - Zak Seidov, May 03 2016

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • R. K. Guy, Unsolved Problems in Theory of Numbers, Sect. B13.
  • W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a002961 n = a002961_list !! (n-1)
    a002961_list = map (+ 1) $ elemIndices 0 a053222_list
    -- Reinhard Zumkeller, Dec 28 2011
  • Mathematica
    Flatten[Position[Partition[DivisorSigma[1,Range[170000]],2,1],{x_,x_}]] (* Harvey P. Dale, Aug 08 2011 *)
    SequencePosition[DivisorSigma[1,Range[200000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2018 *)
  • PARI
    t1=sigma(1);for(n=2,1e6,t2=sigma(n);if(t2==t1,print1(n-1", "));t1=t2) \\ Charles R Greathouse IV, Jul 15 2011
    

Formula

Sum_{n>=1} 1/a(n) is in the interval (0.080958, 610837) (Bayless and Kinlaw, 2015). - Amiram Eldar, Oct 15 2020

Extensions

More terms from Jud McCranie, Oct 15 1997

A053249 Number of divisors of n such that n and n+1 have the same sum of divisors.

Original entry on oeis.org

4, 4, 8, 8, 12, 8, 8, 4, 6, 12, 10, 4, 16, 12, 8, 8, 8, 12, 16, 8, 8, 16, 16, 16, 16, 8, 16, 8, 16, 4, 16, 16, 16, 12, 24, 12, 16, 8, 16, 16, 8, 16, 16, 12, 16, 16, 16, 16, 12, 12, 12, 16, 16, 40, 16, 16, 32, 12, 24, 32, 24, 16, 16, 24, 24, 4, 24, 16, 64, 24, 16, 8, 16, 16, 16, 24, 32, 32, 20, 16
Offset: 1

Views

Author

Asher Auel, Jan 11 2000

Keywords

Crossrefs

Programs

  • Magma
    [#Divisors(n):n in [1..4000000]| SumOfDivisors(n) eq SumOfDivisors(n+1)]; // Marius A. Burtea, Sep 07 2019
  • Mathematica
    Reap[ Do[ If[ DivisorSigma[1, n] == DivisorSigma[1, n + 1], tau = DivisorSigma[0, n]; Print[{n, tau}]; Sow[tau]], {n, 1, 4*10^6}]][[2, 1]] (* Jean-François Alcover, Oct 08 2012 *)
    DivisorSigma[0,#]&/@Flatten[Position[Partition[DivisorSigma[1,Range[ 4000000]],2,1], ?(First[#] == Last[#]&),{1},Heads->False]] (* _Harvey P. Dale, Jul 04 2014 *)
    DivisorSigma[0,#]&/@(SequencePosition[DivisorSigma[1,Range[4000000]],{x_,x_}][[All,1]]) (* Requires Mathematica version 10 or later *)  (* Harvey P. Dale, Jul 25 2019 *)
  • PARI
    do(lim)=my(v=List(),k=1,t); for(n=2,lim, t=sigma(n); if(t==k, listput(v, numdiv(n-1))); k=t); Vec(v) \\ Charles R Greathouse IV, Feb 08 2017
    

Formula

a(n) = tau(A002961(n)).

Extensions

More terms from Naohiro Nomoto, Mar 16 2001

A290303 Values of usigma(n) = usigma(n+1).

Original entry on oeis.org

24, 60, 72, 180, 1440, 2160, 1872, 2640, 2400, 3000, 2880, 3024, 4320, 4320, 4320, 5280, 5280, 7400, 8640, 10080, 10200, 11520, 11880, 11520, 11088, 12960, 12096, 14400, 25920, 21600, 26640, 34560, 25200, 40320, 34560, 36000, 51840, 60480, 63360, 60480, 65280
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2017

Keywords

Comments

The sum of unitary divisors of numbers n such that n and n+1 have the same sum.
The unitary version of A053215.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]];a={}; u1=0; For[k=0, k<10^5, k++; u2=usigma[k]; If[u1==u2, a = AppendTo[a, u1]]; u1=u2]; a

Formula

a(n) = A034448(A064125(n)).

A294029 Values of bsigma(k) = bsigma(k+1), where bsigma is the sum of the bi-unitary divisors (A188999).

Original entry on oeis.org

24, 40, 60, 720, 960, 1440, 2160, 2640, 2400, 3000, 4320, 4320, 4320, 5280, 7400, 11520, 11880, 12960, 14400, 20160, 30240, 26640, 34560, 25200, 34560, 49920, 51840, 60480, 63360, 60480, 65280, 62400, 61560, 115200, 93600, 114912, 100800, 120960, 120960
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2017

Keywords

Comments

The sum of bi-unitary divisors of numbers n such that n and n+1 have the same sum (A293183).
The bi-unitary version of A053215.

Examples

			24 is in the sequence since 24 = bsigma(14) = bsigma(15).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; b1 = 0; For[k = 0, k < 10^6, k++; b2 = bsigma[k]; If[b1 == b2, a = AppendTo[a, b1]]; b1 = b2]; a (* after Michael De Vlieger at A188999 *)

Formula

a(n) = A188999(A293183(n)).

A372114 Sum of squares of divisors of the numbers m such that m and m+2 have the same sum of squares of divisors.

Original entry on oeis.org

850, 48100, 110500, 1171300, 897826072900, 1855703820100, 4974132151300, 223203708201604, 388880538297700, 1056863959716100, 2077699792101700, 2101425630304900, 2444010061663300, 6152287246125700, 6862948725741700, 10203957350659300, 27831593408440900, 50905357902220900
Offset: 1

Views

Author

Amiram Eldar, Apr 19 2024

Keywords

Comments

All the terms are even.
There are only 2 equal consecutive terms in A001157: sigma_2(6) = sigma_2(7) = 50.

Crossrefs

Similar sequences: A053215, A053249.

Programs

  • Mathematica
    seq[mmax_] := Module[{s1 = DivisorSigma[2, 1], s2 = DivisorSigma[2, 2], s3, s4, s={}}, Do[s3 = DivisorSigma[2, m]; s4 = DivisorSigma[2, m+1]; If[s1 == s3, AppendTo[s, s1]]; If[s2 == s4, AppendTo[s, s2]]; s1 = s3; s2 = s4, {m, 3, mmax, 2}]; s]; seq[10^6]
  • PARI
    lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(s1, ", ")); if(s2 == s4, print1(s2, ", ")); s1 = s3; s2 = s4);}

Formula

a(n) = A001157(A169635(n)).
Showing 1-5 of 5 results.