cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A002961 Numbers k such that k and k+1 have same sum of divisors.

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1634, 2685, 2974, 4364, 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 64665, 74918, 79826, 79833, 84134, 92685, 109214, 111506, 116937, 122073, 138237, 147454, 161001, 162602, 166934
Offset: 1

Views

Author

Keywords

Comments

For the values of n < 2*10^10 in this sequence, sigma(n)/n is between 1.5 and 2.25. - T. D. Noe, Sep 17 2007
Whether this sequence is infinite is an unsolved problem, as noted in many of the references and links. - Franklin T. Adams-Watters, Jan 25 2010
144806446575 is the first term for which sigma(n)/n > 2.25. All n < 10^12 have sigma(n)/n > 3/2. - T. D. Noe, Feb 18 2010
A053222(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2011
Numbers n such that n + 1 = antisigma(n+1) - antisigma(n), where antisigma(n) = A024816(n) = the sum of the non-divisors of n that are between 1 and n. Example for n = 14: 15 = antisigma(15) - antisigma(14) = 96 - 81. - Jaroslav Krizek, Nov 10 2013
Up to 10^13, the value of the sigma(n)/n varies between 1417728000/945151999 (attained for n = 2835455997) and 2913242112/1263730145 (for n = 5174974943775). - Giovanni Resta, Feb 26 2014
Also numbers n such that A242962(n) = A242962(n+1), with A242962(n) = T(n) mod antisigma(n), where T(n) = A000217(n) is the n-th triangular number and antisigma(n) = A024816(n) is the sum of numbers less than n which do not divide n. - Jaroslav Krizek, May 29 2014
Guy and Shanks construct 5559060136088313 as a term of this sequence. - Michel Marcus, Dec 29 2014
Note that in all cases, n and n+1 are composite. - Zak Seidov, May 03 2016

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • R. K. Guy, Unsolved Problems in Theory of Numbers, Sect. B13.
  • W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a002961 n = a002961_list !! (n-1)
    a002961_list = map (+ 1) $ elemIndices 0 a053222_list
    -- Reinhard Zumkeller, Dec 28 2011
  • Mathematica
    Flatten[Position[Partition[DivisorSigma[1,Range[170000]],2,1],{x_,x_}]] (* Harvey P. Dale, Aug 08 2011 *)
    SequencePosition[DivisorSigma[1,Range[200000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2018 *)
  • PARI
    t1=sigma(1);for(n=2,1e6,t2=sigma(n);if(t2==t1,print1(n-1", "));t1=t2) \\ Charles R Greathouse IV, Jul 15 2011
    

Formula

Sum_{n>=1} 1/a(n) is in the interval (0.080958, 610837) (Bayless and Kinlaw, 2015). - Amiram Eldar, Oct 15 2020

Extensions

More terms from Jud McCranie, Oct 15 1997

A054004 Numbers k such that k and k+1 have the same number and sum of divisors.

Original entry on oeis.org

14, 1334, 1634, 2685, 33998, 42818, 64665, 84134, 109214, 122073, 166934, 289454, 383594, 440013, 544334, 605985, 649154, 655005, 792855, 1642154, 2284814, 2305557, 2913105, 3571905, 3682622, 4701537, 5181045, 6431732
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			Divisors of 14 = {1, 2, 7, 14}, divisors of 15 = {1, 3, 5, 15}, both have four divisors and sum = 24.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], DivisorSigma[0, #] == DivisorSigma[0, # + 1] && DivisorSigma[1, #] == DivisorSigma[1, # + 1] &] (* Jayanta Basu, Mar 20 2013 *)

Extensions

More terms from Jud McCranie, Jun 02 2000

A053215 Sum of divisors of those numbers n such that n and n+1 have the same sum of divisors.

Original entry on oeis.org

24, 312, 1440, 2160, 2688, 2640, 4320, 4464, 7644, 22932, 28314, 29040, 34560, 37440, 51840, 56160, 65280, 100800, 115200, 114912, 120960, 120960, 138240, 153216, 194400, 168960, 178560, 186048, 207360, 221184, 244800, 280800, 276480
Offset: 1

Views

Author

Asher Auel, Jan 11 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Transpose[Select[{DivisorSigma[1,First[#]],DivisorSigma[1,Last[#]]}&/@ Partition[Range[280000],2,1],First[#]==Last[#]&]][[1]] (* Harvey P. Dale, May 07 2012 *)
    DivisorSigma[1,#]&/@SequencePosition[DivisorSigma[1,Range[280000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 21 2017 *)

Formula

a(n) = sigma(A002961(n))

A054005 Sum of divisors of k such that k and k+1 have the same number and sum of divisors.

Original entry on oeis.org

24, 2160, 2640, 4320, 51840, 65280, 115200, 138240, 194400, 186048, 276480, 483840, 622080, 700416, 950400, 984960, 1118880, 1128960, 1612800, 2661120, 3937248, 3617280, 5019840, 6128640, 5806080, 7375680, 8467200, 11583936
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			See example in A054004.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Table[{n,DivisorSigma[0,n],DivisorSigma[1,n]},{n,116*10^5}],2,1],#[[1,2]]== #[[2,2]] && #[[1,3]]==#[[2,3]]&][[All,1,3]] (* Harvey P. Dale, May 16 2023 *)

Formula

a(n) = sigma(A054004(n)).

Extensions

More terms from Jud McCranie, Oct 15 2000
Definition clarified by Harvey P. Dale, May 16 2023

A054006 Number of divisors of k and k+1 which have the same number and sum of divisors.

Original entry on oeis.org

4, 8, 8, 8, 8, 8, 16, 16, 16, 8, 16, 16, 16, 16, 16, 16, 16, 16, 32, 16, 16, 16, 16, 32, 16, 16, 16, 24, 16, 16, 16, 32, 32, 32, 16, 16, 32, 16, 32, 16, 16, 32, 32, 16, 32, 16, 16, 16, 16, 16, 32, 32, 16, 32, 16, 16, 64, 32, 16, 32, 16, 32, 16, 64, 32, 32, 16, 32, 32, 32, 32
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			See example in A054004.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Array[DivisorSigma[{0, 1}, #] &, 10^6], 2, 1], SameQ @@ # &][[All, 1, 1]] (* Michael De Vlieger, Nov 21 2019 *)

Formula

a(n) = tau(A054004(n)).

Extensions

More terms from Jud McCranie, Oct 15 2000

A054007 Numbers k such that k and k+1 have the same sum but an unequal number of divisors.

Original entry on oeis.org

206, 957, 1364, 2974, 4364, 14841, 18873, 19358, 20145, 24957, 36566, 56564, 74918, 79826, 79833, 92685, 111506, 116937, 138237, 147454, 161001, 162602, 174717, 190773, 193893, 201597, 230390, 274533, 347738, 416577, 422073, 430137
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			The divisors of 206 are 1, 2, 103, 206, so tau(206) = 4 and sigma(206) = 312; the divisors of 207 are 1, 3, 9, 23, 69, 207, so tau(207) = 6 and sigma(207) = 312. Hence, the integer 206 belongs to this sequence. - _Bernard Schott_, Oct 18 2019
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], DivisorSigma[0, #] != DivisorSigma[0, # + 1] && DivisorSigma[1, #] == DivisorSigma[1, # + 1] &] (* Jayanta Basu, Mar 20 2013 *)

Formula

Members of A002961 which are not members of A054004

Extensions

More terms from Jud McCranie, Oct 15 2000

A054002 Number of divisors of n such that n and n-1 have the same sum of divisors.

Original entry on oeis.org

4, 6, 4, 8, 16, 8, 8, 12, 12, 8, 4, 10, 8, 4, 8, 12, 8, 16, 16, 16, 16, 8, 16, 12, 16, 16, 8, 8, 4, 16, 8, 24, 16, 4, 16, 8, 4, 32, 8, 16, 16, 16, 8, 8, 8, 8, 16, 32, 8, 8, 16, 16, 16, 12, 16, 16, 12, 8, 48, 32, 8, 24, 24, 16, 16, 16, 8, 16, 24, 64, 8, 16, 16, 16, 16, 64, 24, 32, 60
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Crossrefs

Programs

  • Magma
    [#Divisors(n):n in [2..3500000]| SumOfDivisors(n) eq SumOfDivisors(n-1)]; // Marius A. Burtea, Sep 07 2019

Formula

a(n) = tau(A002961(n) + 1).

Extensions

More terms from Naohiro Nomoto, Jun 23 2001

A054003 tau(n+1) - tau(n) where n and n+1 have the same sum of divisors.

Original entry on oeis.org

0, 2, -4, 0, 4, 0, 0, 8, 6, -4, -6, 6, -8, -8, 0, 4, 0, 4, 0, 8, 8, -8, 0, -4, 0, 8, -8, 0, -12, 12, -8, 8, 0, -8, -8, -4, -12, 24, -8, 0, 8, 0, -8, -4, -8, -8, 0, 16, -4, -4, 4, 0, 0, -28, 0, 0, -20, -4, 24, 0, -16, 8, 8, -8, -8, 12, -16, 0, -40, 40, -8, 8, 0, 0, 0, 40, -8, 0, 40
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Crossrefs

Programs

  • Magma
    [#Divisors(n+1)-#Divisors(n):n in [1..5000000]| SumOfDivisors(n) eq SumOfDivisors(n+1)]; // Marius A. Burtea, Sep 07 2019

Formula

a(n) = A054002(n) - A053249(n).

Extensions

More terms from Naohiro Nomoto, Jun 23 2001

A372114 Sum of squares of divisors of the numbers m such that m and m+2 have the same sum of squares of divisors.

Original entry on oeis.org

850, 48100, 110500, 1171300, 897826072900, 1855703820100, 4974132151300, 223203708201604, 388880538297700, 1056863959716100, 2077699792101700, 2101425630304900, 2444010061663300, 6152287246125700, 6862948725741700, 10203957350659300, 27831593408440900, 50905357902220900
Offset: 1

Views

Author

Amiram Eldar, Apr 19 2024

Keywords

Comments

All the terms are even.
There are only 2 equal consecutive terms in A001157: sigma_2(6) = sigma_2(7) = 50.

Crossrefs

Similar sequences: A053215, A053249.

Programs

  • Mathematica
    seq[mmax_] := Module[{s1 = DivisorSigma[2, 1], s2 = DivisorSigma[2, 2], s3, s4, s={}}, Do[s3 = DivisorSigma[2, m]; s4 = DivisorSigma[2, m+1]; If[s1 == s3, AppendTo[s, s1]]; If[s2 == s4, AppendTo[s, s2]]; s1 = s3; s2 = s4, {m, 3, mmax, 2}]; s]; seq[10^6]
  • PARI
    lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(s1, ", ")); if(s2 == s4, print1(s2, ", ")); s1 = s3; s2 = s4);}

Formula

a(n) = A001157(A169635(n)).
Showing 1-9 of 9 results.