A054756 Numbers k such that phi(k) and cototient(k) are squares but k is not in A054755.
1, 468, 1417, 1872, 2340, 3145, 4100, 4212, 7488, 9360, 14841, 15588, 16400, 16848, 20329, 21060, 29952, 31417, 37440, 37908, 45097, 49833, 58500, 62352, 63529, 63945, 65600, 67392, 69700, 78625, 79092, 83569, 84169, 84240, 88929, 102500
Offset: 1
Keywords
Examples
An even term is 2340 = 4*9*5*13 (phi = 576 = 24^2 and cototient = 1764 = 42^2). An odd term is 14841 = 9*17*97 (phi = 9216 = 96^2, cototient = 5625 = 75^2).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[ Range[ 1, 200000 ], IntegerQ[ Sqrt[ eu[ # ] ] ]&& IntegerQ[ Sqrt[ co[ # ] ] ]&&!Equal[ lfi[ # ], 1 ]& ], where eu[ x_ ] =EulerPhi[ x ], co[ x_ ]=x-EulerPhi[ x ] and lfi[ x_ ]=Length[ FactorInteger[ x ] ]
Formula
phi(a(n)) = x^2, a(n) - phi(a(n)) = y^2, a(n) is not an odd power of prime from A002496.
Comments