cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A120378 Integers n such that 2*11^n-1 is prime.

Original entry on oeis.org

2, 8, 248, 2474, 2900, 6600, 24746, 105704
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 241 is 181 in base 12.
a(9) > 2*10^5. - Robert Price, Nov 06 2015

Examples

			a(1)=2 since 2*11^2-1=241 is the first prime of this form.
		

Crossrefs

Programs

  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*11^k-1; if isprime(n) then printf("%d, %d",k,n) fi od od;
  • Mathematica
    Select[Range[0, 200000], PrimeQ[2*11^# - 1] &] (* Robert Price, Nov 06 2015 *)

Formula

a(n) = n-th integer k such that 2*11^k-1 is prime.

Extensions

More terms from Ryan Propper, Jan 14 2008
a(7)-a(8) from Robert Price, Nov 06 2015

A120375 Integers k such that 2*5^k - 1 is prime.

Original entry on oeis.org

4, 6, 16, 24, 30, 54, 96, 178, 274, 1332, 2766, 3060, 4204, 17736, 190062, 223536, 260400, 683080
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
a(16) > 2*10^5. - Robert Price, Mar 14 2015

Examples

			a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), this sequence (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Cf. also A000043, A002958.

Programs

  • Magma
    [n: n in [0..2800] |IsPrime(2*5^n - 1)]; // Vincenzo Librandi, Sep 23 2018
  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d ",k,n) fi od od;
  • Mathematica
    Select[Range[0, 100], PrimeQ[2*5^# - 1] &] (* Robert Price, Mar 14 2015 *)
  • PARI
    isok(k) = ispseudoprime(2*5^k-1); \\ Altug Alkan, Sep 22 2018
    

Formula

a(n) = 2*A002958(n).

Extensions

More terms from Ryan Propper, Mar 28 2007
a(14) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 02 2007
a(15) from Robert Price, Mar 14 2015
a(16)-a(18) from Jorge Coveiro and Tyler NeSmith, Jun 14 2020

A141311 Primes consisting of a digit and a nonempty string of 9's (i.e., primes of the form k*10^m - 1, where k is any digit).

Original entry on oeis.org

19, 29, 59, 79, 89, 199, 499, 599, 1999, 2999, 4999, 8999, 49999, 59999, 79999, 199999, 599999, 799999, 2999999, 4999999, 19999999, 29999999, 59999999, 89999999, 799999999, 59999999999, 79999999999, 59999999999999, 499999999999999, 29999999999999999999
Offset: 1

Views

Author

Lekraj Beedassy, Aug 02 2008

Keywords

Comments

k can never be 1, 4, or 7, because if it were, k*10^m - 1 would be divisible by 3.

Crossrefs

Programs

  • Mathematica
    d={9};s={};Do[Do[m=FromDigits[Join[IntegerDigits[i],d]];If[PrimeQ[m],AppendTo[s,m]],{i,8}];AppendTo[d,9],{j,19}];s (* James C. McMahon, Jul 20 2025 *)

Extensions

59999999 from Howard Berman (howard_berman(AT)hotmail.com), Apr 22 2009
Two more terms from Jon E. Schoenfield, Jan 12 2019

A120377 Primes of the form 2*11^k-1.

Original entry on oeis.org

241, 428717761
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 241 is 181 in base 12.
The values of k < 1000 that yield primes are 2, 8, 248. - T. D. Noe, Nov 16 2006

Examples

			a(1) = 241 since 2*11^2-1 = 241 is the first prime.
		

Crossrefs

Programs

  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*11^k-1; if isprime(n) then printf("%d, %d",k,n) fi od od;
  • Mathematica
    Select[2*11^Range[1000]-1, PrimeQ] (* T. D. Noe, Nov 16 2006 *)

Formula

a(n) = n-th number such that 2*11^k-1 that is prime for some k.
a(n) = 2*11^A120378(n)-1. - R. J. Mathar, Mar 06 2010

Extensions

Corrected by T. D. Noe, Nov 16 2006

A120376 Primes of the form 2*5^k - 1.

Original entry on oeis.org

1249, 31249, 305175781249, 119209289550781249, 1862645149230957031249, 111022302462515654042363166809082031249, 25243548967072377773175314089049159349542605923488736152648925781249
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
The next term has 125 digits. - Harvey P. Dale, Jan 26 2019

Examples

			a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), this sequence (b=5), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Cf. also A000043, A002958.

Programs

  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d",k,n) fi od od;
  • Mathematica
    Select[2*5^Range[100]-1,PrimeQ] (* Harvey P. Dale, Jan 26 2019 *)
  • PARI
    for(k=1, 1e3, if(ispseudoprime(p=2*5^k-1), print1(p, ", "))); \\ Altug Alkan, Sep 22 2018

Formula

a(n) = 2*5^A120375(n) - 1 = 2*5^(2*A002958(n)) - 1. - Jianing Song, Sep 22 2018

A320256 k-digit primes with the same even digit repeated k-1 times and a single odd digit.

Original entry on oeis.org

3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 223, 227, 229, 443, 449, 661, 881, 883, 887, 2221, 4441, 4447, 6661, 8887, 22229, 44449, 88883, 444443, 444449, 666667, 888887, 22222223, 66666667, 88888883, 222222227, 444444443, 666666667, 888888883, 888888887
Offset: 1

Views

Author

Enrique Navarrete, Oct 08 2018

Keywords

Comments

For the resulting number to be prime, the rightmost digit must be the odd one. - Michel Marcus, Oct 11 2018

Examples

			3, 5, 7 are in the sequence for k = 1.
229 is in the sequence because it is a 3-digit prime with the first 3-1 digits repeating even (2) and the last digit odd (9). - _David A. Corneth_, Oct 10 2018
		

Crossrefs

Programs

  • Mathematica
    Join[{3, 5, 7}, Select[Flatten@ Table[{1, 3, 7, 9} + 10 FromDigits@ ConstantArray[k, n], {n, 9}, {k, Range[2, 8, 2]}], PrimeQ]] (* Michael De Vlieger, Oct 31 2018 *)
  • PARI
    first(n) = {n = max(n, 3); my(t = 3, res = List([3, 5, 7])); print1("3, 5, 7, "); for(i=1, oo, k=(10^i - 1) / 9; forstep(f = 2, 8, 2, forstep(d=1, 9, 2, c = 10 * f * k + d; if(isprime(c), print1(c", "); listput(res, c); t++; if(t>=n, return(res))))))} \\ David A. Corneth, Oct 10 2018

Extensions

More terms from Michel Marcus, Oct 10 2018

A164890 Primes composed of digit {1,9} and with digit sum 9*k+1.

Original entry on oeis.org

19, 199, 919, 991, 1999, 9199, 99991, 199999, 991999, 999199, 9999991, 19999999, 99991999, 9199999999, 11111111911, 11119111111, 99999199999, 99999991999, 111111911191, 111191119111, 111911191111, 191119111111, 991999999999, 999999991999, 1111111119919, 1111111191199, 1111111191919, 1111111199119
Offset: 1

Views

Author

Zak Seidov, Aug 29 2009

Keywords

Comments

Corresponding k's are 1, 2, 2, 2, 3, 3, 4, 5, 5, 5, 6, 7, 7, 9, 2, 2, 10, 10, 3, 3, 3, 3, 11, 11, 4, 4, 4, 4. - Robert Israel, May 02 2018
Number of primes having a digital length of k=1,2,3...: 0, 1, 3, 2, 1, 3, 1, 2, 0, 1, 4, 6, 33, 81, 329, 455, 2028, 3134, 9193, 9060, 31615, 39246, 88069, 94794, 252965, 309437, ..., . = Robert G. Wilson v, May 05 2018

Crossrefs

Programs

  • Maple
    Res:= {}:
    for d from 2 to 14 do
      for j from 1 to d by 9 do
        Res:= Res union select(isprime, {seq((10^d-1)/9 + 8*add(10^i,i=s), s = combinat:-choose([$0..d-1],d-j))})
    od od:
    sort(convert(Res,list)); # Robert Israel, May 02 2018
  • Mathematica
    f[n_] := Block[{s, t = Tuples[{1, 9}, n]}, s = Select[t, Mod[Plus @@ #, 9] == 1 &]; Select[ FromDigits@# & /@ s, PrimeQ]]; Array[f, 12] // Flatten (* Robert G. Wilson v, May 04 2018 *)
  • PARI
    isok(n) = isprime(n) && (Set(digits(n)) == [1, 9]) && ((sumdigits(n) % 9) == 1); \\ Michel Marcus, Oct 16 2013

Extensions

Definition corrected by Michel Marcus, Oct 16 2013
Corrected by Robert Israel, May 02 2018

A319535 Primes of the form 2*6^k - 1.

Original entry on oeis.org

11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791
Offset: 1

Views

Author

Jianing Song, Sep 22 2018

Keywords

Comments

Primes in A164559.
Companion sequence of A057472. There are 49 terms known in this sequence.

Examples

			2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), this sequence (b=6), A158795 (b=7), A055558 (b=10), A120377 (b=11).

Programs

  • Magma
    [k: n in [1..100] | IsPrime(k) where k is 2*6^n-1];  // K. D. Bajpai, Nov 15 2019
  • Maple
    A319535:= n-> (2*6^n-1): select(isprime, [seq((A319535(n), n=1..200))]);  # K. D. Bajpai, Nov 15 2019
  • Mathematica
    Select[Table[2*6^k-1,{k,1600}], PrimeQ[#]&]  (* K. D. Bajpai, Nov 15 2019 *)
  • PARI
    for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", ")))
    

Formula

a(n) = 2*6^A057472(n) - 1.

A378950 Numbers that are a proper substring of the concatenation (with repetition) in decreasing order of their prime factors.

Original entry on oeis.org

95, 132, 995, 9995, 73332, 85713, 93115, 131131, 197591, 632812, 999995, 4285713, 8691315, 58730137, 99999995, 131373333, 507107133, 4870313015
Offset: 1

Views

Author

Scott R. Shannon, Dec 11 2024

Keywords

Comments

All numbers of the form 5*A055558(k), k>=1, are terms.

Examples

			95 is a term as 95 = 19 * 5 = "195" when concatenated, which contains "95" as a substring.
632812 is a term as 632812 = 563 * 281 * 2 * 2 = "56328122" when concatenated, which contains "632812" as a substring.
4870313015 is a term as 4870313015 = 748703 * 1301 * 5 = "74870313015" when concatenated, which contains "4870313015" as a substring.
		

Crossrefs

A160452 Invertible primes of the form 1 followed by a string of 9's.

Original entry on oeis.org

19, 199, 1999, 1999999999999999999999999999
Offset: 1

Views

Author

Lekraj Beedassy, May 14 2009

Keywords

Comments

These are values in A055558 whose rotation by 180 degrees occurs in A092571. I have checked all the numbers that correspond to entries in A002957 and can confirm that the next term in this sequence, if it exists, is greater than 2*10^55347-1. [From Dmitry Kamenetsky, May 22 2009]

Examples

			1999, for instance, is a prime which rotated upside down through 180 degrees becomes the prime 6661. Hence 1999 is in the sequence.
		

Crossrefs

Cf. A092571, A002957. [From Dmitry Kamenetsky, May 22 2009]
Showing 1-10 of 12 results. Next