A056220 a(n) = 2*n^2 - 1.
-1, 1, 7, 17, 31, 49, 71, 97, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1457, 1567, 1681, 1799, 1921, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049, 4231, 4417, 4607, 4801
Offset: 0
Examples
a(0) = 0^2-1*1 = -1, a(1) = 1^2 - 4*0 = 1, a(2) = 2^2 - 9*1 = 7, etc. a(4) = 31 = (1, 3, 3, 1) dot (1, 6, 4, 0) = (1 + 18 + 12 + 0). - _Gary W. Adamson_, Aug 29 2008
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq., Vol. 13 (2010), Article # 10.7.8.
- Mitch Phillipson, Manda Riehl, and Tristan Williams, Enumeration of Wilf classes in Sn ~ Cr for two patterns of length 3, PU. M. A., Vol. 21, No. 2 (2010), pp. 321-338.
- Marco Ripà, The rectangular spiral or the n1 X n2 X ... X nk Points Problem , Notes on Number Theory and Discrete Mathematics, Vol. 20, No. 1 (2014), pp. 59-71.
- Leo Tavares, Illustration: Twin Squares
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000105, A000217, A000290, A000384, A001082, A001653, A001844, A002378, A002593, A003215, A005563, A028347, A036666, A046092, A047875, A062717, A069074, A077585, A087475, A119258, A143593, A154685, A162610, A188653, A225227.
Cf. A066049 (indices of prime terms)
Column 2 of array A188644 (starting at offset 1).
Programs
-
GAP
List([0..50], n-> 2*n^2-1); # Muniru A Asiru, Jul 24 2018
-
Magma
[2*n^2-1 : n in [0..50]]; // Vincenzo Librandi, May 30 2014
-
Maple
A056220:=n->2*n^2-1; seq(A056220(n), n=0..50); # Wesley Ivan Hurt, Jun 16 2014
-
Mathematica
Array[2 #^2 - 1 &, 50, 0] (* Robert G. Wilson v, Jul 23 2018 *) CoefficientList[Series[(x^2 +4x -1)/(1-x)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {-1, 1, 7}, 51] (* Robert G. Wilson v, Jul 24 2018 *)
-
PARI
a(n)=2*n^2-1;
-
Sage
[2*n^2-1 for n in (0..50)] # G. C. Greubel, Jul 07 2019
Formula
G.f.: (-1 + 4*x + x^2)/(1-x)^3. - Henry Bottomley, Dec 12 2000
a(n) = A119258(n+1,2) for n > 0. - Reinhard Zumkeller, May 11 2006
From Doug Bell, Mar 08 2009: (Start)
a(0) = -1,
a(n) + a(n+1) + 1 = (2n+1)^2. - Doug Bell, Mar 09 2009
a(n) = a(n-1) + 4*n - 2 (with a(0)=-1). - Vincenzo Librandi, Dec 25 2010
a(n) = A188653(2*n) for n > 0. - Reinhard Zumkeller, Apr 13 2011
a(n) = A162610(2*n-1,n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(n) = ( Sum_{k=0..2} (C(n+k,3)-C(n+k-1,3))*(C(n+k,3)+C(n+k+1,3)) ) - (C(n+2,3)-C(n-1,3))*(C(n,3)+C(n+3,3)), for n > 3. - J. M. Bergot, Jun 16 2014
a(n) = j^2 + k^2 - 2 or 2*j*k if n >= 2 and j = n + sqrt(2)/2 and k = n - sqrt(2)/2. - Avi Friedlich, Mar 30 2015
a(n) = A002593(n)/n^2. - Bruce J. Nicholson, Apr 03 2017
a(n) = A000384(n) + n - 1. - Bruce J. Nicholson, Nov 12 2017
a(n)*a(n+k) + 2k^2 = m^2 (a perfect square), m = a(n) + (2n*k), for n>=1. - Ezhilarasu Velayutham, May 13 2019
From Amiram Eldar, Aug 10 2020: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(2)*Pi*cot(Pi/sqrt(2))/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi*csc(Pi/sqrt(2))/4 - 1/2. (End)
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(2))*csc(Pi/sqrt(2)).
Product_{n>=2} (1 - 1/a(n)) = (Pi/(4*sqrt(2)))*csc(Pi/sqrt(2)). (End)
Let T(n) = n*(n+1)/2. Then a(n)^2 = T(2n-2)*T(2n+1) + n^2. - Charlie Marion, Feb 12 2023
E.g.f.: exp(x)*(2*x^2 + 2*x - 1). - Stefano Spezia, Jul 08 2023
Comments