A088790
Numbers k such that (k^k-1)/(k-1) is prime.
Original entry on oeis.org
2, 3, 19, 31, 7547
Offset: 1
- R. K. Guy, Unsolved Problems in Theory of Numbers, 1994, A3.
Cf.
A070519 (cyclotomic(n, n) is prime).
Cf.
A056826 ((n^n+1)/(n+1) is prime).
-
Do[p=Prime[n]; If[PrimeQ[(p^p-1)/(p-1)], Print[p]], {n, 100}]
-
is(n)=ispseudoprime((n^n-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017
A081216
a(n) = (n^n-(-1)^n)/(n+1).
Original entry on oeis.org
0, 1, 1, 7, 51, 521, 6665, 102943, 1864135, 38742049, 909090909, 23775972551, 685853880635, 21633936185161, 740800455037201, 27368368148803711, 1085102592571150095, 45957792327018709121, 2070863582910344082917, 98920982783015679456199
Offset: 0
-
a:= n-> (n^n-(-1)^n)/(n+1):
seq(a(n), n=0..20); # Alois P. Heinz, May 11 2023
-
a(n) = (n^n-(-1)^n)/(n+1); \\ Michel Marcus, Jul 29 2017
-
[((n - 1)**(n - 1) + (-1)**n) // n for n in range(1, 16)]
A124899
Sierpinski quotient ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).
Original entry on oeis.org
1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, 98920982783015679456199, 265572137199362841880960201, 870019499993663001431459704607, 3416070845000481662841943594125601
Offset: 1
Cf.
A014566 (Sierpinski numbers of the first kind: n^n + 1).
-
List([1..15],n->((2*n-1)^(2*n-1)+1)/(2*n)); # Muniru A Asiru, Apr 08 2018
-
seq(((2*n-1)^(2*n-1)+1)/(2*n),n=1..20); # Muniru A Asiru, Apr 08 2018
-
Table[((2n-1)^(2n-1)+1)/(2n),{n,1,20}]
-
a(n) = ((2*n-1)^(2*n-1) + 1)/(2*n); \\ Michel Marcus, Apr 08 2018
A088817
Numbers k such that Cyclotomic(2k,k) is prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 9, 17, 36, 157, 245, 352, 3977
Offset: 1
Cf.
A056826 ((k^k+1)/(k+1) is prime),
A070519 (cyclotomic(k,k) is prime),
A088875 (cyclotomic(k,-k) is prime).
-
Do[p=Prime[n]; If[PrimeQ[Cyclotomic[2n, n]], Print[p]], {n, 100}]
-
is(n)=ispseudoprime(polcyclo(2*n,n)) \\ Charles R Greathouse IV, May 22 2017
A088875
Cyclotomic(n,-n) is prime.
Original entry on oeis.org
1, 3, 4, 5, 6, 9, 12, 14, 17, 82, 86, 157, 158, 180, 210, 236, 245, 368, 462, 842, 1034, 3512, 3977, 8636
Offset: 1
Cf.
A056826 ((n^n+1)/(n+1) is prime),
A070519 (cyclotomic(n, n) is prime),
A088817 (cyclotomic(2n, n) is prime).
-
Do[p=Prime[n]; If[PrimeQ[Cyclotomic[n, -n]], Print[p]], {n, 100}]
Showing 1-5 of 5 results.
Comments