cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A088790 Numbers k such that (k^k-1)/(k-1) is prime.

Original entry on oeis.org

2, 3, 19, 31, 7547
Offset: 1

Views

Author

T. D. Noe, Oct 16 2003

Keywords

Comments

Note that (k^k-1)/(k-1) is prime only if k is prime, in which case it equals cyclotomic(k,k), the k-th cyclotomic polynomial evaluated at x=k. This sequence is a subsequence of A070519. The number cyclotomic(7547,7547) is a probable prime found by H. Lifchitz. Are there only a finite number of these primes?
From T. D. Noe, Dec 16 2008: (Start)
The standard heuristic implies that there are an infinite number of these primes and that the next k should be between 10^10 and 10^11.
Let N = (7547^7547-1)/(7547-1) = A023037(7547). If N is prime, then the period of the Bell numbers modulo 7547 is N. See A054767. (End)

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, 1994, A3.

Crossrefs

Cf. A070519 (cyclotomic(n, n) is prime).
Cf. A056826 ((n^n+1)/(n+1) is prime).

Programs

  • Mathematica
    Do[p=Prime[n]; If[PrimeQ[(p^p-1)/(p-1)], Print[p]], {n, 100}]
  • PARI
    is(n)=ispseudoprime((n^n-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

A081216 a(n) = (n^n-(-1)^n)/(n+1).

Original entry on oeis.org

0, 1, 1, 7, 51, 521, 6665, 102943, 1864135, 38742049, 909090909, 23775972551, 685853880635, 21633936185161, 740800455037201, 27368368148803711, 1085102592571150095, 45957792327018709121, 2070863582910344082917, 98920982783015679456199
Offset: 0

Views

Author

Vladeta Jovovic, Apr 17 2003

Keywords

Comments

a(n) is prime for n = {3, 5, 17, 157} = A056826(n) Primes p such that (p^p + 1)/(p + 1) is a prime. Prime a(n) are {7, 521, 45957792327018709121, ...}. Bisection of a(n) is Sierpinski quotient a(2n-1) = A124899(n) = ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n). - Alexander Adamchuk, Nov 12 2006
This is related to the dimension of the primitive middle cohomology of Dwork hypersurfaces x1**n+x2**n+...+xn**n=n*psi*x1*x2*...*xn. [F. Chapoton, Dec 11 2009]

Crossrefs

Main diagonal of A062160.
Cf. A056826, A124899, A014566 (Sierpinski numbers of the first kind: n^n + 1).

Programs

  • Maple
    a:= n-> (n^n-(-1)^n)/(n+1):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 11 2023
  • PARI
    a(n) = (n^n-(-1)^n)/(n+1); \\ Michel Marcus, Jul 29 2017
  • Sage
    [((n - 1)**(n - 1) + (-1)**n) // n for n in range(1, 16)]
    

Extensions

Edited by F. Chapoton, Feb 03 2011

A124899 Sierpinski quotient ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).

Original entry on oeis.org

1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, 98920982783015679456199, 265572137199362841880960201, 870019499993663001431459704607, 3416070845000481662841943594125601
Offset: 1

Views

Author

Alexander Adamchuk, Nov 12 2006

Keywords

Comments

2n divides Sierpinski number A014566(2n-1).
2^n divides A014566(2^n-1); A014566(2^n - 1) / 2^n = A081216(2^n - 1) = A122000(n) = {1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, ...}.
p+1 divides A014566(p) for prime p; A014566(p)/(p+1) = A056852(n) = {7, 521, 102943, 23775972551, 21633936185161, ...}.
Primes in this sequence are {7, 521, 45957792327018709121}.

Crossrefs

Cf. A014566 (Sierpinski numbers of the first kind: n^n + 1).

Programs

  • GAP
    List([1..15],n->((2*n-1)^(2*n-1)+1)/(2*n)); # Muniru A Asiru, Apr 08 2018
    
  • Maple
    seq(((2*n-1)^(2*n-1)+1)/(2*n),n=1..20); # Muniru A Asiru, Apr 08 2018
  • Mathematica
    Table[((2n-1)^(2n-1)+1)/(2n),{n,1,20}]
  • PARI
    a(n) = ((2*n-1)^(2*n-1) + 1)/(2*n); \\ Michel Marcus, Apr 08 2018

Formula

a(n) = ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).
(2n-1)^(a(n)-1) == 1 (mod a(n)). - Thomas Ordowski, Mar 16 2021

A088817 Numbers k such that Cyclotomic(2k,k) is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 17, 36, 157, 245, 352, 3977
Offset: 1

Views

Author

T. D. Noe, Oct 20 2003

Keywords

Comments

This is a generalization of A056826. Note that (n^n+1)/(n+1) = cyclotomic(2n,n) when n is prime. These are probable primes for n > 352. No others < 4700.
All terms of this sequence that are greater than 3 are congruent to 0 or 1 mod 4. In general, if k = s^2*t where t is squarefree and t == 2, 3 (mod 4), then Cyclotomic(2k,t*x^2) is the product of two polynomials. See the Wikipedia link below. - Jianing Song, Sep 25 2019

Crossrefs

Cf. A056826 ((k^k+1)/(k+1) is prime), A070519 (cyclotomic(k,k) is prime), A088875 (cyclotomic(k,-k) is prime).

Programs

  • Mathematica
    Do[p=Prime[n]; If[PrimeQ[Cyclotomic[2n, n]], Print[p]], {n, 100}]
  • PARI
    is(n)=ispseudoprime(polcyclo(2*n,n)) \\ Charles R Greathouse IV, May 22 2017

A088875 Cyclotomic(n,-n) is prime.

Original entry on oeis.org

1, 3, 4, 5, 6, 9, 12, 14, 17, 82, 86, 157, 158, 180, 210, 236, 245, 368, 462, 842, 1034, 3512, 3977, 8636
Offset: 1

Views

Author

T. D. Noe, Oct 20 2003

Keywords

Comments

This is a generalization of A056826. See A088817 for another generalization. Note that (n^n+1)/(n+1) = cyclotomic(n,-n) when n is prime. Also note that, for odd n>1, cyclotomic(n,-n) = cyclotomic(2n,n) and for n a multiple of 4, cyclotomic(n,-n) = cyclotomic(n,n).
Some of the larger entries may only correspond to probable primes.

Crossrefs

Cf. A056826 ((n^n+1)/(n+1) is prime), A070519 (cyclotomic(n, n) is prime), A088817 (cyclotomic(2n, n) is prime).

Programs

  • Mathematica
    Do[p=Prime[n]; If[PrimeQ[Cyclotomic[n, -n]], Print[p]], {n, 100}]
Showing 1-5 of 5 results.