cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A014566 Sierpiński numbers of the first kind: n^n + 1.

Original entry on oeis.org

2, 2, 5, 28, 257, 3126, 46657, 823544, 16777217, 387420490, 10000000001, 285311670612, 8916100448257, 302875106592254, 11112006825558017, 437893890380859376, 18446744073709551617, 827240261886336764178, 39346408075296537575425, 1978419655660313589123980
Offset: 0

Views

Author

Keywords

Comments

Sierpiński primes of the form n^n + 1 are {2,5,257,...} = A121270. The prime p divides a((p-1)/2) for p = {5,7,13,23,29,31,37,47,53,61,71,...} = A003628 Primes congruent to {5, 7} mod 8. p^2 divides a((p-1)/2) for prime p = {29,37,3373,...}. - Alexander Adamchuk, Sep 11 2006
n divides a(n-1) for even n, or 2n divides a(2n-1). a(2n-1)/(2n) = A124899(n) = {1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, ...}. 2^n divides a(2^n-1). A014566[2^n - 1] / 2^n = A081216[2^n - 1] = A122000[n] = {1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, ...}. p+1 divides a(p) for prime p. a(p)/(p+1) = A056852[n] = {7, 521, 102943, 23775972551, 21633936185161, ...}. p^2 divides a((p-1)/2) for prime p = {29, 37, 3373} = A121999(n). - Alexander Adamchuk, Nov 12 2006

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Maohua Le, Primes in the sequences n^n+1 and n^n-1, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, pp. 156-157.
  • Paulo Ribenboim, The Book of Prime Number Records, 2nd ed. New York: Springer-Verlag, p. 74, 1989.

Crossrefs

Programs

Formula

For n>0, resultant of x^n+1 and nx-1. - Ralf Stephan, Nov 20 2004
E.g.f.: exp(x) + 1/(1+LambertW(-x)). - Vaclav Kotesovec, Dec 20 2014
Sum_{n>=1} 1/a(n) = A134883. - Amiram Eldar, Nov 15 2020

Extensions

More terms from Erich Friedman

A062160 Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, -1, 1, 5, 7, 3, 1, 0, 1, 0, 11, 20, 13, 4, 1, 0, -1, 1, 21, 61, 51, 21, 5, 1, 0, 1, 0, 43, 182, 205, 104, 31, 6, 1, 0, -1, 1, 85, 547, 819, 521, 185, 43, 7, 1, 0, 1, 0, 171, 1640, 3277, 2604, 1111, 300, 57, 8, 1, 0, -1, 1, 341, 4921, 13107, 13021, 6665, 2101, 455, 73, 9, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - Peter Bala, May 30 2024

Examples

			From _Seiichi Manyama_, Apr 12 2019: (Start)
Square array begins:
   0, 1, -1,  1,  -1,    1,    -1,      1, ...
   0, 1,  0,  1,   0,    1,     0,      1, ...
   0, 1,  1,  3,   5,   11,    21,     43, ...
   0, 1,  2,  7,  20,   61,   182,    547, ...
   0, 1,  3, 13,  51,  205,   819,   3277, ...
   0, 1,  4, 21, 104,  521,  2604,  13021, ...
   0, 1,  5, 31, 185, 1111,  6665,  39991, ...
   0, 1,  6, 43, 300, 2101, 14706, 102943, ... (End)
		

Crossrefs

Related to repunits in negative bases (cf. A055129 for positive bases).
Main diagonal gives A081216.
Cf. A109502.

Programs

  • Maple
    seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # Peter Bala, May 31 2024
  • Mathematica
    T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* Stefano Spezia, Feb 20 2024 *)

Formula

T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.
T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - Max Alekseyev, Sep 28 2021
G.f. of row n: x/((1+x) * (1-n*x)). - Seiichi Manyama, Apr 12 2019
E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - Stefano Spezia, Feb 20 2024
From Peter Bala, May 31 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.
T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)

A124899 Sierpinski quotient ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).

Original entry on oeis.org

1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, 98920982783015679456199, 265572137199362841880960201, 870019499993663001431459704607, 3416070845000481662841943594125601
Offset: 1

Views

Author

Alexander Adamchuk, Nov 12 2006

Keywords

Comments

2n divides Sierpinski number A014566(2n-1).
2^n divides A014566(2^n-1); A014566(2^n - 1) / 2^n = A081216(2^n - 1) = A122000(n) = {1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, ...}.
p+1 divides A014566(p) for prime p; A014566(p)/(p+1) = A056852(n) = {7, 521, 102943, 23775972551, 21633936185161, ...}.
Primes in this sequence are {7, 521, 45957792327018709121}.

Crossrefs

Cf. A014566 (Sierpinski numbers of the first kind: n^n + 1).

Programs

  • GAP
    List([1..15],n->((2*n-1)^(2*n-1)+1)/(2*n)); # Muniru A Asiru, Apr 08 2018
    
  • Maple
    seq(((2*n-1)^(2*n-1)+1)/(2*n),n=1..20); # Muniru A Asiru, Apr 08 2018
  • Mathematica
    Table[((2n-1)^(2n-1)+1)/(2n),{n,1,20}]
  • PARI
    a(n) = ((2*n-1)^(2*n-1) + 1)/(2*n); \\ Michel Marcus, Apr 08 2018

Formula

a(n) = ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).
(2n-1)^(a(n)-1) == 1 (mod a(n)). - Thomas Ordowski, Mar 16 2021

A083062 a(n) = (n+1)^n/(n+2) - (-1)^n/(n+2).

Original entry on oeis.org

0, 1, 2, 13, 104, 1111, 14706, 233017, 4304672, 90909091, 2161452050, 57154490053, 1664148937320, 52914318216943, 1824557876586914, 67818912035696881, 2703399548648159360, 115047976828352449051, 5206367514895562076642, 249660952380952380952381
Offset: 0

Views

Author

Paul Barry, Apr 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n+1)^n/(n+2)-(-1)^n/(n+2),{n,0,20}] (* Harvey P. Dale, Oct 08 2013 *)

A122000 a(n) = ((2^n - 1)^(2^n - 1) + 1) / 2^n.

Original entry on oeis.org

1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, 3566766192921360077810945505268211287512797261288920841093043641769808083046939618603793791988232043305924036607
Offset: 1

Views

Author

Alexander Adamchuk, Sep 11 2006

Keywords

Comments

A014566(n) = n^n + 1 is Sierpinski Number of the First Kind. A014566(2^n - 1) is divisible by 2^n. a(n) is a subset of A081216(n) = (n^n-(-1)^n)/(n+1).
2^p - 1 divides a(p-1) for prime p>2. Corresponding quotients are a(p-1) / (2^p - 1) = {1, 882850585445281, 28084773172609134470952326813135521948919663474715912134590894817085103016117634792155856629828598766188378241, ...}, where p = prime(n) for n>1. - Alexander Adamchuk, Jan 22 2007

Crossrefs

Programs

  • Mathematica
    Table[((2^n-1)^(2^n-1)+1)/2^n,{n,1,7}]

Formula

a(n) = A014566(2^n - 1) / 2^n.
a(n) = A081216(2^n - 1).
a(n) = A056009(2^n - 1).

A083063 a(n) = (n+1)^(n-1)/(n+2) + (-1)^n/(n+2).

Original entry on oeis.org

1, 0, 1, 3, 21, 185, 2101, 29127, 478297, 9090909, 196495641, 4762874171, 128011456717, 3779594158353, 121637191772461, 4238682002231055, 159023502861656433, 6391554268241802725, 274019342889240109297
Offset: 0

Views

Author

Paul Barry, Apr 20 2003

Keywords

Crossrefs

Programs

  • Sage
    [abs(gaussian_binomial(n,1,-(n+2))) for n in range(-1,18)] # Zerinvary Lajos, May 31 2009

A128446 Quotients A122000(p-1) / (2^p - 1), where p = prime(n) for n > 1.

Original entry on oeis.org

1, 882850585445281, 28084773172609134470952326813135521948919663474715912134590894817085103016117634792155856629828598766188378241
Offset: 2

Views

Author

Alexander Adamchuk, Mar 03 2007

Keywords

Comments

A014566(n) = n^n + 1 is a Sierpinski Number of the First Kind.
A014566(2^n - 1) is divisible by 2^n.
A122000(n) = ((2^n - 1)^(2^n - 1) + 1) / 2^n = A014566(2^n - 1) / 2^n = A081216(2^n - 1).
a(5) = 6.044...*10^3072, and is too large to include. - Amiram Eldar, Jul 17 2025

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n]}, ((2^(p-1) - 1)^(2^(p-1) - 1) + 1)/(2^(p-1)*(2^p-1))]; Array[a, 3, 2] (* Amiram Eldar, Jul 17 2025 *)

Formula

a(n) = ((2^(prime(n)-1) - 1)^(2^(prime(n)-1)-1) + 1)/(2^(prime(n)-1)*(2^prime(n)-1)).

A280797 a(n) = (n^n - 1)*(n^n + 1)/(n + 1).

Original entry on oeis.org

0, 0, 5, 182, 13107, 1627604, 310968905, 84777884106, 31274997412295, 15009463529699912, 9090909090909090909, 6783562448903313426110, 6115142092568526471803195, 6552380728090615475599972572, 8231779712749862388415318790417, 11984441202055255416780710220336914
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jan 08 2017

Keywords

Examples

			a(0) = 0 because (0^0 - 1)*(0^0 + 1)/(0 + 1) = 0,
a(1) = 0 because (1^1 - 1)*(1^1 + 1)/(1 + 1) = 0,
a(2) = 5 because (2^2 - 1)*(2^2 + 1)/(2 + 1) = 5.
		

Crossrefs

Programs

  • Magma
    [(n^(2*n)-1)/(n+1): n in [0..15]];
  • Mathematica
    Table[If[n == 0, 0, (n^n - 1) (n^n + 1)/(n + 1)], {n, 0, 15}] (* Michael De Vlieger, Jan 09 2017 *)

Formula

a(n) = A117812(n)/(n + 1).

Extensions

Offset changed to 0 by Georg Fischer, Jul 15 2024
Showing 1-8 of 8 results.