cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A057901 a(n) = 3^prime(n).

Original entry on oeis.org

9, 27, 243, 2187, 177147, 1594323, 129140163, 1162261467, 94143178827, 68630377364883, 617673396283947, 450283905890997363, 36472996377170786403, 328256967394537077627, 26588814358957503287787
Offset: 1

Views

Author

Henry Bottomley, Sep 29 2000

Keywords

Examples

			a(4) = 3^7 = 2187.
		

Crossrefs

Subsequence of A000244 (powers of 3).

Programs

Formula

a(n) = 3^A000040(n).
Sum_{n>=1} 1/a(n) = A132800. - Amiram Eldar, Aug 11 2020

A132797 Decimal expansion of Sum_{n >= 1} 1/5^prime(n).

Original entry on oeis.org

0, 4, 8, 3, 3, 2, 8, 2, 1, 3, 0, 0, 5, 6, 3, 2, 3, 2, 6, 9, 1, 6, 6, 3, 4, 7, 1, 2, 5, 1, 5, 6, 6, 5, 9, 6, 5, 2, 2, 7, 0, 2, 3, 4, 1, 0, 3, 4, 0, 1, 5, 8, 2, 7, 2, 2, 9, 4, 9, 6, 7, 7, 4, 6, 8, 3, 9, 2, 7, 9, 1, 6, 6, 9, 7, 5, 0, 9, 6, 0, 6, 5, 1, 5, 2, 7, 2, 3, 8, 6, 6, 3, 8, 6, 6, 1, 6, 0
Offset: 0

Views

Author

Cino Hilliard, Nov 17 2007

Keywords

Comments

Equivalently, the real number in (0,1) having the characteristic function of the primes, A010051, as its base-5 expansion. - M. F. Hasler, Jul 04 2017

Examples

			0.0483328213005632326916634712515665965227023410340158272294967746839279...
		

Crossrefs

Cf. A000720, A051006 (analog for base 2), A057902, A132800 (analog for base 3), A132806 (analog for base 4), A010051 (characteristic function of the primes), A132817 (base 6).

Programs

  • PARI
    /* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,n, print1(eval(a[j])",") ) }
    
  • PARI
    suminf(n=1, 1/5^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 04 2017

Formula

From Amiram Eldar, Aug 11 2020: (Start)
Equals Sum_{k>=1} 1/A057902(k).
Equals 4 * Sum_{k>=1} pi(k)/5^(k+1), where pi(k) = A000720(k). (End)

Extensions

Offset corrected R. J. Mathar, Jan 26 2009
Edited by M. F. Hasler, Jul 04 2017

A135175 a(n) = 5^p + 3^p - 2^p, where p = prime(n).

Original entry on oeis.org

30, 144, 3336, 80184, 49003224, 1222289256, 763068462216, 19074648065304, 11921023089868344, 186264583552936197096, 4656613490748641378424, 72759576592118027485247016, 45474735125119406073899483976, 1136868377544417255992242883544, 710542735786689000089344282510584
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4)=80184 because the 4th prime number is 7, 5^7=78125, 3^7=2187, 2^7=128 and 78125+2187-128=80184.
		

Crossrefs

Cf. 2^p: A034785. 3^p: A057901. 2^5: A057902.

Programs

  • Magma
    [5^p+3^p-2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010
  • Maple
    a:= n-> (p-> 5^p+3^p-2^p)(ithprime(n)):
    seq(a(n), n=1..15);  # Alois P. Heinz, Jun 08 2025
  • Mathematica
    5^#+3^#-2^#&/@Prime[Range[20]]  (* Harvey P. Dale, Apr 04 2011 *)
    Table[5^p + 3^p - 2^p, {p, Prime[Range[20]]}] (* Vincenzo Librandi, May 24 2014 *)

Formula

a(n) = 5^p + 3^p - 2^p with p = A000040(n).

Extensions

More terms from Vincenzo Librandi, Dec 14 2010

A269327 a(n) = 7^prime(n).

Original entry on oeis.org

49, 343, 16807, 823543, 1977326743, 96889010407, 232630513987207, 11398895185373143, 27368747340080916343, 3219905755813179726837607, 157775382034845806615042743, 18562115921017574302453163671207, 44567640326363195900190045974568007
Offset: 1

Views

Author

Emre APARI, Feb 23 2016

Keywords

Examples

			The second prime is 3, hence a(2) = 7^3 = 343.
The third prime is 5, hence a(3) = 7^5 = 16807.
		

Crossrefs

Programs

Formula

a(n) = 7^A000040(n).
Sum_{n>=1} 1/a(n) = A132822. - Amiram Eldar, Aug 11 2020

A135173 a(n) = 5^p - 3^p - 2^p, where p = prime(n).

Original entry on oeis.org

12, 90, 2850, 75810, 48648930, 1219100610, 762810181890, 19072323542370, 11920834803510690, 186264446292181467330, 4656612255401848810530, 72759575691550215703252290, 45474735052173413319557911170, 1136868376887903321203168728290, 710542735733511371371429275935010
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4) = 75810 because the 4th prime number is 7, 5^7 = 78125, 3^7 = 2187, 2^7 = 128 and 78125-2187-128 = 75810.
		

Crossrefs

Cf. A034785 (2^p), A057901 (3^p), A057902 (5^p).

Programs

Formula

a(n) = 5^p - 3^p - 2^p, with p = A000040(n).
a(n) = A057902(n) - A057901(n) - A034785(n). - Michel Marcus, Jun 14 2014

Extensions

More terms from Vincenzo Librandi, Dec 14 2010

A135174 a(n) = 5^prime(n) - 3^prime(n) + 2^prime(n).

Original entry on oeis.org

20, 106, 2914, 76066, 48653026, 1219116994, 762810444034, 19072324590946, 11920834820287906, 186264446293255209154, 4656612255406143777826, 72759575691550490581159234, 45474735052173417717604422274, 1136868376887903338795354772706, 710542735733511371652904252645666
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4)=76066 because the 4th prime number is 7, 5^7=78125, 3^7=2187, 2^7=128 and 78125-2187+128=76066.
		

Crossrefs

Cf. A000040.
Cf. 2^p: A034785; 3^p: A057901; 5^p: A057902.

Programs

  • Magma
    [5^p-3^p+2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010
  • Mathematica
    Table[5^p-3^p+2^p,{p,Prime[Range[20]]}] (* Harvey P. Dale, Dec 12 2013 *)

Formula

a(n)= 5^A000040(n) - 3^A000040(n) + 2^A000040(n).

Extensions

More terms from Vincenzo Librandi, Dec 14 2010

A135176 5^p + 3^p + 2^p, where p = prime(n).

Original entry on oeis.org

38, 160, 3400, 80440, 49007320, 1222305640, 763068724360, 19074649113880, 11921023106645560, 186264583554009938920, 4656613490752936345720, 72759576592118302363153960, 45474735125119410471945995080, 1136868377544417273584428927960, 710542735786689000370819259221240
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4)=80440 because the 4th prime number is 7, 5^7=78125, 3^7=2187, 2^7=128 and 78125+2187+128=80440.
		

Crossrefs

Cf. 2^p: A034785. 3^p: A057901. 2^5: A057902.

Programs

  • Magma
    [5^p+3^p+2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi Dec 14 2010
  • Mathematica
    Table[5^p + 3^p + 2^p, {p, Prime[Range[20]]}] (* Vincenzo Librandi, May 24 2014 *)

Formula

p=A000040(n): a(n)= 5^p + 3^p + 2^p.

Extensions

More terms from Vincenzo Librandi, Dec 14 2010
Showing 1-7 of 7 results.