cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A163193 Numbers k such that sigma(k) = 2*sigma(k+1).

Original entry on oeis.org

12, 70, 88, 204, 220, 1750, 1888, 2958, 8142, 8632, 9114, 14664, 18414, 18762, 20118, 20712, 25194, 45520, 64206, 65652, 65964, 77814, 79338, 79824, 85096, 90804, 103410, 103644, 117822, 158946, 163938, 176364, 185776, 186612, 194416, 202656, 203898, 245632
Offset: 1

Views

Author

Keywords

Comments

The cases sigma(k) = 3*sigma(k+1) are rarer: k=180, 12000, 30996, 47940, ... [R. J. Mathar, Jul 25 2009]

Crossrefs

Programs

  • Mathematica
    f[n_]:=DivisorSigma[1,n]; lst={};Do[If[f[n]==f[n+1]*2,AppendTo[lst,n]], {n,9!}];lst

Formula

{k: A000203(k) = 2*A000203(k+1)}.

Extensions

Edited by R. J. Mathar, Jul 25 2009

A132585 Numbers k such that sigma(k)-k-1 divides sigma(k+1)-k-2, where sigma(k) is sum of positive divisors of k and the ratio is greater than zero.

Original entry on oeis.org

25, 49, 799, 899, 32399, 292681, 1492995736325809
Offset: 1

Views

Author

Keywords

Comments

The banal case of ratio equal to zero is excluded. In fact if k+1 is a prime than sigma(k+1)-k-2=0. Therefore the ratio with sigma(k)-k-1 is equal to zero. Is this sequence finite?
a(7) <= 1492995736325809. [From Donovan Johnson, Aug 31 2008]
a(7) > 10^13. - Giovanni Resta, Jul 11 2013
No other terms < 2.7*10^15. - Jud McCranie, Jul 26 2025

Examples

			k=25 -> sigma(25)= 1+5+25 -> sigma(k)-k-1=5
k+1=26 -> sigma(26)= 1+2+13+26 -> sigma(k+1)-k-2=2+13=15
15/5 = 3 (integer > 0)
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local a,i; for i from 1 by 1 to n do if sigma(i)-i-1>0 then a:=(sigma(i+1)-i-2)/(sigma(i)-i-1); if a>0 and trunc(a)=a then print(i); fi; fi; od; end: P(100000);

Extensions

a(6) from Donovan Johnson, Aug 31 2008
a(7) by Jud McCranie, Jul 26 2025

A132586 Numbers k such that sigma(k+1)-k-2 divides sigma(k)-k-1, where sigma(k) is sum of positive divisors of k and the ratio is greater than zero.

Original entry on oeis.org

8, 24, 8925, 32445, 118540859325
Offset: 1

Views

Author

Keywords

Comments

The banal case of ratio equal to zero is excluded. In fact if k is a prime than sigma(k)-k-1=0. Therefore the ratio with sigma(k+1)-k-2 is equal to zero. Is this sequence finite?
a(6), if it exists, is larger than 10^13. - Giovanni Resta, Jul 13 2015
No more terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			n=8 -> sigma(8)=1+2+4+8 -> sigma(n)-n-1=2+4=6.
n+1=9 -> sigma(9)=1+3+9 -> sigma(n+1)-n-2=3.
6/3 = 2 (integer >0)
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local a,i; for i from 1 by 1 to n do if sigma(i+1)-i-2>0 then a:=(sigma(i)-i-1)/(sigma(i+1)-i-2); if a>0 and trunc(a)=a then print(i); fi; fi; od; end: P(100000);

Extensions

a(5) from Donovan Johnson, Aug 31 2008

A217791 Numbers k such that sigma(k) = 3*sigma(k+1).

Original entry on oeis.org

180, 12000, 30996, 47940, 66780, 102816, 128040, 234300, 494088, 712272, 1133088, 1408212, 1623072, 1692768, 1896336, 1925196, 2024760, 2388720, 2529090, 2836008, 3423120, 3724320, 3822360, 4628760, 4750920, 7219608, 7359912, 7603488, 7749060
Offset: 1

Views

Author

Paolo P. Lava, Mar 25 2013

Keywords

Examples

			47940 is in the sequence because sigma(47940)=145152, sigma(47941)=48384, and 145152=3*48384.
7749060 is in the sequence because sigma(7749060)=24192000, sigma(7749061)=8064000, and 24192000=3*8064000.
		

Crossrefs

Programs

Extensions

More terms from Bruno Berselli, Mar 25 2013

A227304 Numbers k such that sigma(k+1) divides sigma(k-1).

Original entry on oeis.org

34, 55, 285, 367, 835, 849, 919, 1241, 1505, 2911, 2914, 3305, 4149, 4188, 6111, 6903, 7170, 7913, 8506, 9360, 10251, 10541, 12566, 15086, 17273, 17815, 19005, 19689, 21411, 21462, 24882, 25020, 25501, 26610, 28125, 30361, 30593, 30789, 31485, 37741, 38211, 38983, 39787
Offset: 1

Views

Author

Alex Ratushnyak, Jul 05 2013

Keywords

Comments

The sequence consists mainly of terms of A055574 = { n | sigma(n+1) = sigma(n-1) }. - M. F. Hasler, Aug 06 2015

Examples

			Sigma(8507) = 8736 divides sigma(8505) = 17472 = 8736*2, so 8506 is in the sequence.
		

Crossrefs

Programs

A227240 Numbers k such that sigma(k) divides sigma(2*k) and sigma(2*k + 1).

Original entry on oeis.org

1, 3, 5, 7, 11, 23, 29, 41, 53, 77, 83, 89, 103, 113, 131, 143, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 533, 593, 641, 653, 659, 667, 683, 719, 743, 761, 807, 809, 817, 911, 953, 1013, 1019, 1031, 1049, 1073, 1103, 1223, 1229, 1289, 1409
Offset: 1

Views

Author

Alex Ratushnyak, Jul 03 2013

Keywords

Comments

Numbers such that 2*k and/or 2*k + 1 is also in the sequence: 1, 3, 5, 11, 41, 89, 179, 359, 509, 719, 743, ... (Cf. A007700).

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], IntegerQ[DivisorSigma[1, 2#]/DivisorSigma[1, #]] && IntegerQ[DivisorSigma[1, 2# + 1]/DivisorSigma[1, #]] &] (* Alonso del Arte, Jul 15 2013 *)
    Select[Range[1500],And@@Divisible[{DivisorSigma[1,2#],DivisorSigma[1,2#+1]}, DivisorSigma[1,#]]&] (* Harvey P. Dale, Feb 25 2016 *)
  • PARI
    isok(n) = my(sn=sigma(n)); !(sigma(2*n) % sn) && !(sigma(2*n+1) % sn); \\ Michel Marcus, Oct 02 2017

A340582 Numbers k such that sigma(k) = 4 * sigma(k+1).

Original entry on oeis.org

25908120, 136616760, 171430560, 196876680, 354049920, 405601560, 514374840, 825473880, 1204476000, 2223650520, 2510539920, 3003191100, 4017339480, 4574146500, 6129062940, 6797728800, 7311296520, 9779952000, 12472435080, 13103164800, 19989450000, 22180840920, 22710872520
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2021

Keywords

Crossrefs

Extensions

a(9)-a(23) from Seiichi Manyama using A058073 data, Jan 21 2021

A260988 Numbers n such that sigma(n) = m*sigma(n+2) with some m > 1.

Original entry on oeis.org

8505, 25500, 30360, 37740, 40740, 123795, 141480, 185460, 442365, 485400, 834435, 953568, 1055460, 1097820, 1108320, 1397220, 1953960, 2088480, 2208840, 2571744, 3050784, 3342816, 3544695, 3810456, 4314156, 4725660, 4867236, 5638776, 6318180, 6596340, 8428320, 8630832, 9347280, 9576336, 9908460, 10271580, 10992360, 11789925
Offset: 1

Views

Author

M. F. Hasler, Aug 06 2015

Keywords

Comments

Sequence A227304 is the union of A055574 and { a(n)+1 }.
Many but not all terms are multiples of 5.

Crossrefs

Programs

  • PARI
    for(n=1,2e9,sigma(n)%sigma(n+2)||sigma(n)==sigma(n+2)||print1(n","))
Showing 1-8 of 8 results.