cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A083555 Quotient of LCM of prime(n+1)-1 and prime(n)-1 and GCD of the same two numbers.

Original entry on oeis.org

2, 2, 6, 15, 30, 12, 72, 99, 154, 210, 30, 90, 420, 483, 598, 754, 870, 110, 1155, 1260, 156, 1599, 1804, 132, 600, 2550, 2703, 2862, 756, 72, 4095, 4420, 4692, 5106, 5550, 650, 702, 6723, 7138, 7654, 8010, 342, 9120, 2352, 9702, 1155, 1295, 12543, 12882
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=25: prime(25)=97, prime(26)=101; a(25) = lcm(96,100)/gcd(96,100) = 2400/4 = 600.
		

Crossrefs

Programs

  • Maple
    P:= seq(ithprime(i),i=1..100):
    seq(ilcm(P[i+1]-1,P[i]-1)/igcd(P[i+1]-1,P[i]-1),i=1..99); # Robert Israel, Jun 11 2017
  • Mathematica
    f[x_] := Prime[x]-1 Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}]
    (* Second program: *)
    Table[Apply[LCM[#1, #2]/GCD[#1, #2] &, Prime[n + {1, 0}] - 1], {n, 49}] (* Michael De Vlieger, Jun 11 2017 *)
  • PARI
    first(n)=my(v=vector(n),p=2,k,g); forprime(q=3,, g=gcd(p-1,q-1); v[k++]=(p-1)*(q-1)/g^2; p=q; if(k==n, break)); v \\ Charles R Greathouse IV, Jun 11 2017

Formula

a(n) = lcm(A006093(n+1), A006093(n))/gcd(A006093(n+1), A006093(n));
a(n) = A083554(n)/A058263(n).
a(n) = A051537(A006093(n+1), A006093(n)). - Robert Israel, Jun 11 2017

A063091 Prime(n) such that gcd(1+prime(n+1), 1+prime(n)) = gcd(-1+prime(n+1), -1+prime(n)).

Original entry on oeis.org

2, 3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 283, 311, 317, 337, 347, 419, 431, 461, 521, 547, 569, 577, 599, 617, 641, 659, 773, 787, 809, 821, 827, 857, 863, 881, 1019, 1031, 1049, 1061, 1091, 1129, 1151, 1153
Offset: 1

Views

Author

Labos Elemer, Aug 06 2001

Keywords

Examples

			p=101 is here because gcd(102,104) = 2 = gcd(100,102).
		

Crossrefs

Cf. A058263.

Programs

  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];If[GCD[p0-1,p1-1]==GCD[p0+1,p1+1],AppendTo[lst,p0]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 11 2010 *)
    Transpose[Select[Partition[Prime[Range[200]],2,1],GCD[First[#]+1, Last[#]+1] == GCD[First[#]-1,Last[#]-1]&]][[1]] (* Harvey P. Dale, Jan 22 2012 *)
  • PARI
    { n=0; for (m=1, 10^9, if(gcd(prime(m+1) + 1, prime(m) + 1) == gcd(prime(m+1) - 1, prime(m) - 1), write("b063091.txt", n++, " ", prime(m)); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 17 2009

A063086 a(n) = gcd(1 + prime(n+1), 1 + prime(n)).

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 4, 6, 2, 2, 2, 2, 4, 6, 6, 2, 2, 4, 2, 2, 4, 6, 2, 2, 2, 4, 2, 2, 2, 4, 6, 2, 10, 2, 2, 2, 4, 6, 6, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2, 6, 2, 2, 6, 6, 6, 2, 2, 2, 2, 2, 14, 4, 2, 2, 2, 2, 2, 2, 2, 6, 8, 2, 2, 4, 6, 2, 2, 2, 10, 2, 2, 2, 2, 4, 6, 2, 2, 2, 4, 12, 8, 4, 4, 4, 6, 6, 2, 2, 2, 2, 6
Offset: 1

Views

Author

Labos Elemer, Aug 06 2001

Keywords

Examples

			n=34: gcd(1 + 139, 1 + 149) = 10 = a(34).
		

Crossrefs

Cf. A058263.

Programs

  • Mathematica
    GCD[First[#]+1,Last[#]+1]&/@ Partition[Prime[Range[110]],2,1] (* Harvey P. Dale, May 02 2012 *)
  • PARI
    a(n)={gcd(1 + prime(n+1), 1 + prime(n))} \\ Harry J. Smith, Aug 17 2009

A083553 Product of prime(n+1)-1 and prime(n)-1.

Original entry on oeis.org

2, 8, 24, 60, 120, 192, 288, 396, 616, 840, 1080, 1440, 1680, 1932, 2392, 3016, 3480, 3960, 4620, 5040, 5616, 6396, 7216, 8448, 9600, 10200, 10812, 11448, 12096, 14112, 16380, 17680, 18768, 20424, 22200, 23400, 25272, 26892, 28552, 30616, 32040
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Comments

The conductor of x*prime(n) + y*prime(n+1); that is, for all k >= a(n), there exist nonnegative integers x and y such that k = x*prime(n) + y*prime(n+1). - T. D. Noe, Sep 22 2004

Examples

			n=25: a(25) = (97-1)*(101-1) = 9600.
		

References

  • David Bressoud and Stan Wagon, A Course in Computational Number Theory, Key College Pub., 2000, p. 46.

Crossrefs

Cf. A000040, A006093, A058263, A083538-A083555, A099407 (terms halved), A172042 [= A000010(a(n))], A256617.
One more than A037165.
Column 3 of A379010.

Programs

  • Mathematica
    f[x_] := Prime[x]-1; Table[f[w+1]*f[w], {w, 1, 128}]
  • PARI
    A083553(n) = ((prime(1+n)-1)*(prime(n)-1)); \\ Antti Karttunen, Dec 14 2024

Formula

a(n) = A006093(n+1)*A006093(n) = (prime(n+1)-1)*(prime(n)-1).
a(n) = A037165(n) + 1.
a(n) = 2*A099407(n). - Antti Karttunen, Dec 14 2024

A067605 Least k such that gcd(prime(k+1)-1, prime(k)-1) = 2n.

Original entry on oeis.org

2, 6, 11, 24, 42, 121, 30, 319, 99, 1592, 344, 574, 3786, 4196, 650, 4619, 217, 1532, 11244, 5349, 8081, 3861, 12751, 18281, 9221, 5995, 22467, 16222, 43969, 35975, 192603, 108146, 52313, 218234, 15927, 132997, 42673, 78858, 103865, 84483, 111172, 175288, 110734
Offset: 1

Views

Author

Robert G. Wilson v, Jan 31 2002

Keywords

Comments

Since all consecutive primes, p < q and p greater than 2, are odd, therefore gcd(p-1, q-1) must be even.

Examples

			For n = 4: a(4) = 24 = gcd(89-1, 97-1) = gcd(p(24)-1, p(25)-1) = 8 = 2*4.
		

Crossrefs

Programs

  • Maple
    N:= 50: # for a(1)..a(N)
    V:= Vector(N): count:= 0:
    p:= 3:
    for k from 2 while count < N do
      q:= p;
      p:= nextprime(p);
      v:= igcd(p-1,q-1)/2;
      if v <= N and V[v] = 0 then
        count:= count+1; V[v]:= k;
      fi
    od:
    convert(V,list); # Robert Israel, Mar 05 2025
  • Mathematica
    a = Table[0, {100}]; p = 3; q = 5; Do[q = Prime[n + 1]; d = GCD[p - 1, q - 1]/2; If[d < 101 && a[[d]] == 0, a[[d]] = n]; b = c, {n, 2, 10^7}]; a
  • PARI
    list(len) = {my(v = vector(len), c = 0, p = 3, k = 2, i); forprime(q = 5, , i = gcd(p-1, q-1)/2; if(i <= len && v[i] == 0, v[i] = k; c++; if(c == len, break)); p = q; k++); v;} \\ Amiram Eldar, Mar 05 2025

Formula

a(n) = PrimePi(A058264(n)).

A083554 Least common multiple of prime(n+1)-1 and prime(n)-1.

Original entry on oeis.org

2, 4, 12, 30, 60, 48, 144, 198, 308, 420, 180, 360, 840, 966, 1196, 1508, 1740, 660, 2310, 2520, 936, 3198, 3608, 1056, 2400, 5100, 5406, 5724, 3024, 1008, 8190, 8840, 9384, 10212, 11100, 3900, 4212, 13446, 14276, 15308, 16020, 3420, 18240, 9408
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=25: a(25) = lcm(97-1, 101-1) = lcm(96,100) = 2400.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x]-1; Table[LCM[f[w+1], f[w]], {w, 1, 128}]
  • PARI
    a(n) = lcm(prime(n+1)-1, prime(n)-1); \\ Michel Marcus, Mar 15 2018

Formula

a(n) = lcm(A006093(n+1), A006093(n)) = lcm(prime(n+1)-1, prime(n)-1).

A058264 Smallest prime p of two consecutive primes, p < q, such that gcd( p-1, q-1 ) = 2n.

Original entry on oeis.org

3, 13, 31, 89, 181, 661, 113, 2113, 523, 13421, 2311, 4177, 35543, 39901, 4831, 44417, 1327, 12853, 119321, 52321, 82657, 36389, 136897, 203713, 95651, 59281, 255259, 178697, 531919, 427621, 2640581, 1414849, 643303, 3021173, 175141, 1770337, 514967, 1004797, 1354393
Offset: 1

Views

Author

Labos Elemer, Dec 06 2000

Keywords

Comments

Since all consecutive primes, p < q and p greater than 2, are odd, therefore gcd( p-1, q-1 ) must be even.

Examples

			a(4) = 89 because gcd(89-1, 97-1) = gcd(8*11, 8*16) = 8 = 2*4 and these primes are the smallest with this property.
a(49) = 604073 because gcd(604073-1, 604171-1) = gcd(6164*98, 6165*98) = 98 = 2*49.
		

Crossrefs

Programs

  • Mathematica
    a = Table[0, {100}]; p = 3; q = 5; Do[q = Prime[n + 1]; d = GCD[p - 1, q - 1]/2; If[d < 101 && a[[d]] == 0, a[[d]] = n]; b = c, {n, 2, 10^7}]; a
    With[{tsp={#[[1]],#[[2]],GCD[#[[1]]-1,#[[2]]-1]}&/@Partition[Prime[ Range[ 300000]],2,1]}, Transpose[Flatten[Table[Select[tsp, Last[#]==2n&,1],{n,40}],1]][[1]]] (* Harvey P. Dale, Jul 07 2013 *)
  • PARI
    list(len) = {my(v = vector(len), c = 0, p = 3, i); forprime(q = 5, , i = gcd(p-1, q-1)/2; if(i <= len && v[i] == 0, v[i] = p; c++; if(c == len, break)); p = q); v;} \\ Amiram Eldar, Mar 05 2025

Formula

a(n) = prime(A067605(n)). - Amiram Eldar, Mar 05 2025

Extensions

Edited by Robert G. Wilson v, Feb 01 2002

A080373 a(n) is the smallest number k such that GCD of n values of prime(j)-1 for successive j values starting with k is greater than 2, where prime(j) = j-th prime.

Original entry on oeis.org

3, 6, 24, 77, 271, 271, 1395, 1395, 1395, 13717, 34369, 172146, 172146, 804584, 804584, 804584, 12762142, 16138563, 16138563, 56307979, 56307979, 56307979, 56307979, 56307979, 1857276773, 3511121443
Offset: 1

Views

Author

Labos Elemer, Feb 26 2003

Keywords

Examples

			For n = 2: a(2) = 6 = A067605(2).
For n = 3: a(3) = 24 means: firstly occurs that for three consecutive p-1 terms GCD[prime(24)-1, prime(25)-1, prime(26)-1] = GCD[88, 96, 100] = 4 > 2;
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k = 0, v = vector(n, i, prime(i)-1)); if(gcd(v) > 2, return(0)); forprime(p = v[n]+1, , k++; v = concat(vecextract(v, "^1"), p-1); if(gcd(v) > 2, return(k)));} \\ Amiram Eldar, Jun 22 2024

Formula

a(n) = Min{x; gcd[prime(x)-1, ..., prime(x+n-1)] > 2}, where prime() = A000040().

Extensions

a(1) corrected and a(17)-a(26) added by Amiram Eldar, Jun 22 2024
Showing 1-8 of 8 results.