A058877 Number of labeled acyclic digraphs with n nodes containing exactly n-1 points of in-degree zero.
0, 2, 9, 28, 75, 186, 441, 1016, 2295, 5110, 11253, 24564, 53235, 114674, 245745, 524272, 1114095, 2359278, 4980717, 10485740, 22020075, 46137322, 96468969, 201326568, 419430375, 872415206, 1811939301, 3758096356, 7784628195, 16106127330, 33285996513
Offset: 1
Examples
G.f. = 2*x^2 + 9*x^3 + 28*x^4 + 75*x^5 + 186*x^6 + 441*x^7 + 1016*x^8 + ...
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
- Gerta Rucker and Christoph Rucker, "Walk counts, Labyrinthicity and complexity of acyclic and cyclic graphs and molecules", J. Chem. Inf. Comput. Sci., 40 (2000), 99-106. See Table 1 on page 101. [From Parthasarathy Nambi, Sep 26 2008]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2001
- Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 12.
- Han Mao Kiah, Alexander Vardy and Hanwen Yao, Computing Permanents on a Trellis, arXiv:2107.07377 [cs.IT], 2021.
- Tamás Szakács, Convolution of second order linear recursive sequences. II. Commun. Math. 25, No. 2, 137-148 (2017), remark 3.
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 36.
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Programs
-
Magma
[(n+1)*2^n-n-1: n in [0..30]]; // Vincenzo Librandi, Sep 26 2011
-
Maple
[seq (stirling2(n,2)*n,n=1..29)]; # Zerinvary Lajos, Dec 06 2006 a:=n->sum(k*binomial(n,k), k=2..n): seq(a(n), n=1..29); # Zerinvary Lajos, May 08 2007
-
Mathematica
Table[(n+1)*2^n-n-1, {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 30 2011 *) a[ n_] := Sum[ Binomial[ n, k] (n - k), {k, n-1}]; (* Michael Somos, Mar 29 2012 *)
-
PARI
{a(n) = if( n<1, 0, n * (2^(n-1) - 1))} /* Michael Somos, Mar 29 2012 */
-
Sage
[stirling_number2(i,2)*i for i in range(1,26)] # Zerinvary Lajos, Jun 27 2008
-
Sage
[(n+1)*gaussian_binomial(n,1,2) for n in range(0,29)] # Zerinvary Lajos, May 31 2009
Formula
a(n+1) = (n+1)*2^n - n - 1 = Sum_{j=0..n} (n+j)*2^(n-j-1) = A048493(n)-1 = Column sum of A062111. - Henry Bottomley, May 30 2001
From R. J. Mathar, Jan 25 2009: (Start)
G.f.: x^2*(2-3*x)/((1-2*x)*(1-x))^2.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4). (End)
a(n) = Sum_{k=1..n-1} binomial(n, k) * (n-k). - Michael Somos, Mar 29 2012
E.g.f: x*exp(x)*(exp(x)-1). - Enrique Navarrete, Apr 05 2021
Extensions
More terms from Vladeta Jovovic, Apr 10 2001
Comments