A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A062801
Number of 2 X 2 non-singular integer matrices with entries from {0,...,n}.
Original entry on oeis.org
0, 6, 50, 192, 512, 1126, 2146, 3760, 6112, 9430, 13922, 19888, 27504, 37206, 49202, 63872, 81600, 102854, 127874, 157328, 191440, 230870, 276114, 327776, 386128, 452118, 526178, 608960, 701056, 803430, 916290, 1040976, 1177744, 1327606
Offset: 0
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 19 2001
This sequence a(n) and
A059306 give together all the 2 X 2 matrices with entries from {0, ..., n}, i.e. a(n) +
A059306(n) = (n+1)^4.
-
Table[cnt=0; Do[If[a*d-b*c != 0, cnt++ ], {a,0,n}, {b,0,n}, {c,0,n}, {d,0,n}]; cnt, {n,0,10}] (* T. D. Noe, Oct 08 2008 *)
A134506
Number of 2 X 2 singular integer matrices with elements from {1,...,n}.
Original entry on oeis.org
0, 1, 6, 15, 32, 49, 86, 111, 160, 209, 278, 319, 432, 481, 582, 703, 832, 897, 1078, 1151, 1360, 1537, 1702, 1791, 2096, 2257, 2454, 2671, 2976, 3089, 3510, 3631, 3952, 4241, 4502, 4831, 5360, 5505, 5798, 6143, 6704, 6865, 7478, 7647, 8144, 8721, 9078, 9263
Offset: 0
Graziano Aglietti (mg5055(AT)mclink.it), Jan 20 2008, Feb 04 2008
Cf.
A059306 (similar but with elements from {0, ..., n}).
-
a = {}; For[n = 2, n < 50, n++, s = 0; For[j = 1, j < n + 1, j++, For[c = 1, c < n + 1, c++, s = s + Length[Select[Divisors[c*j], # < n + 1 && c*j/# < n + 1 &]]]]; AppendTo[a, s]]; a (* Stefan Steinerberger, Feb 06 2008 *)
-
a(n) = {my(nnb = 0); for (i=1, n, for (j=1, n, pij = i*j; for (k=1, n, for (l=1, n, if (pij == k*l, nnb++););););); nnb;} \\ Michel Marcus, Feb 03 2016
-
a(n)=sum(i=1,n,sum(j=1,n,my(ij=i*j);sumdiv(ij,k, k<=n && ij/k<=n))) \\ Charles R Greathouse IV, Feb 03 2016
-
a(n)=2*sum(i=2,n,sum(j=1,i-1,my(ij=i*j);sumdiv(ij,k, k<=n && ij/k<=n))) + sum(i=1,n,my(i2=i^2);sumdiv(i2,k, k<=n && i2/k<=n)) \\ Charles R Greathouse IV, Feb 03 2016
A187521
T(n,k)=Number of (n+1)X(n+1) 0..k arrays with the array of 2X2 subblock determinants antisymmetric and no off-diagonal 2X2 subblock determinant zero.
Original entry on oeis.org
10, 31, 6, 64, 98, 2, 113, 450, 354, 0, 170, 1590, 4200, 1780, 0, 255, 3426, 34776, 73764, 12008, 0, 336, 8546, 107990, 1655170, 2048596, 157694, 0, 449, 13992, 475370, 8174314, 144075566, 129034386, 2808560, 0, 570, 26158, 978568, 70304076
Offset: 1
Some k=3 solutions for 5X5
..0..0..2..0..2....2..3..2..1..1....2..1..2..3..3....1..1..0..3..1
..2..1..1..2..0....2..3..3..3..2....2..1..1..1..2....1..1..1..0..2
..2..2..2..2..1....3..3..3..1..2....1..1..1..2..1....2..1..1..1..2
..2..0..1..1..1....2..1..3..1..1....1..2..1..2..2....1..2..1..1..1
..0..2..3..2..2....3..2..2..1..1....2..1..2..2..2....3..0..1..2..2
A187705
T(n,k)=Number of (n+1)X(n+1) 0..k arrays with each 2X2 subblock off diagonal and antidiagonal nonsingular and the array of 2X2 subblock determinants antisymmetric about the diagonal and antidiagonal.
Original entry on oeis.org
10, 31, 128, 64, 1489, 2, 113, 8272, 72, 34, 170, 31461, 322, 5030, 0, 255, 93476, 1718, 81456, 36, 2, 336, 235773, 2904, 875696, 530, 7410, 0, 449, 524284, 9834, 4225652, 4612, 230446, 474, 0, 570, 1062857, 13324, 22532156, 12898
Offset: 1
Some k=3 solutions for 5X5
..0..0..1..2..2....0..0..1..2..2....0..0..1..0..0....0..3..2..3..2
..2..2..0..2..2....3..3..0..1..1....1..1..0..1..2....0..3..3..3..2
..2..3..0..3..2....1..2..0..2..1....1..2..0..1..1....1..0..0..0..1
..2..2..0..2..2....1..1..0..3..3....1..1..0..1..2....2..3..1..3..2
..2..2..1..3..3....0..0..1..2..2....1..1..1..0..0....2..3..0..3..2
A020478
Number of singular 2 X 2 matrices over Z(n) (i.e., with determinant = 0).
Original entry on oeis.org
1, 10, 33, 88, 145, 330, 385, 736, 945, 1450, 1441, 2904, 2353, 3850, 4785, 6016, 5185, 9450, 7201, 12760, 12705, 14410, 12673, 24288, 18625, 23530, 26001, 33880, 25201, 47850, 30721, 48640, 47553, 51850, 55825, 83160, 51985, 72010, 77649, 106720
Offset: 1
-
f[p_, e_] := p^(2*e - 1)*(p^(e + 1) + p^e - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
-
a(n)=if(n<1, 0, direuler(p=2, n, (1-p*X)/((1-p^2*X)*(1-p^3*X)))[n])
-
a(n)=local(c=0); forvec(x=vector(4,k,[1,n]),c+=((x[1]*x[2]-x[3]*x[4])%n==0)); c
A187624
T(n,k)=Number of (n+1)X(n+1) 0..k arrays with each 2X2 non-center subblock determinant nonzero and the array of 2X2 subblock determinants antisymmetric under 90 degree rotation.
Original entry on oeis.org
10, 31, 24, 64, 446, 2, 113, 2924, 60, 948, 170, 12104, 390, 324452, 36, 255, 37448, 2146, 12278892, 70548, 190972, 336, 98014, 5324, 221177664, 4232368, 6090023738, 3020, 449, 221640, 16042, 1896404966
Offset: 1
Some k=3 solutions for 5X5
..1..0..1..0..1....2..0..1..3..2....2..0..1..2..3....1..0..2..0..1
..0..2..1..2..0....0..2..0..2..0....0..2..0..2..1....0..2..1..2..2
..1..0..1..0..1....1..0..1..0..1....1..3..2..0..1....2..0..3..0..2
..3..2..2..2..3....2..2..3..2..1....0..2..0..2..1....0..2..0..2..2
..1..0..1..0..1....2..0..1..0..2....2..3..1..0..2....1..3..2..0..1
A187633
T(n,k)=Number of (n+1)X(n+1) 0..k arrays with the array of 2X2 subblock determinants antisymmetric under horizontal and vertical reflection and each non-centerline 2X2 subblock nonsingular.
Original entry on oeis.org
10, 31, 24, 64, 446, 24, 113, 2924, 1648, 954, 170, 12104, 14044, 557382, 954, 255, 37448, 106892, 31903442, 672698, 194008, 336, 98014, 306320, 686589106, 33869160, 21411605018, 194008, 449, 221640, 1848504, 7836968262, 795758912
Offset: 1
Some k=3 solutions for 5X5
..2..0..2..1..2....2..0..2..0..2....2..0..2..1..2....2..0..2..1..3
..0..1..0..1..0....0..3..2..3..0....0..2..0..2..0....0..3..0..3..3
..3..1..3..1..3....2..0..2..0..2....2..1..2..0..2....2..0..2..0..2
..0..1..0..1..0....0..3..0..3..0....0..2..0..2..2....1..3..0..3..3
..2..2..2..1..2....2..3..2..0..2....2..2..2..0..2....3..3..2..1..3
A005353
Number of 2 X 2 matrices with entries mod n and nonzero determinant.
Original entry on oeis.org
0, 6, 48, 168, 480, 966, 2016, 3360, 5616, 8550, 13200, 17832, 26208, 34566, 45840, 59520, 78336, 95526, 123120, 147240, 181776, 219846, 267168, 307488, 372000, 433446, 505440, 580776, 682080, 762150, 892800, 999936, 1138368, 1284486
Offset: 1
- T. Brenner, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[cnt=0; Do[m={{a, b}, {c, d}}; If[Det[m, Modulus->p] > 0, cnt++ ], {a, 0, p-1}, {b, 0, p-1}, {c, 0, p-1}, {d, 0, p-1}]; cnt, {p, 37}] (* T. D. Noe, Jan 12 2006 *)
f[p_, e_] := p^(2*e - 1)*(p^(e + 1) + p^e - 1); a[1] = 0; a[n_] := n^4 - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
-
a(n) = {my(f = factor(n), p, e); n^4 - prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; p^(2*e - 1)*(p^(e + 1) + p^e - 1));} \\ Amiram Eldar, Oct 31 2023
A059976
Number of 3 X 3 determinants with elements from {0,...,n} and having the value zero.
Original entry on oeis.org
1, 338, 6891, 49246, 228737, 716214, 2110081, 4663844, 10289331, 19945864, 37518971, 61582884, 109478509, 165518210, 259500567, 393804256, 586056347, 802076580, 1171487431, 1550250662, 2174383653, 2909581936, 3842464925, 4838646900, 6528085915, 8177178662, 10347435783, 12932799472
Offset: 0
Showing 1-10 of 18 results.
Comments