cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A269442 a(n) = n*(n^8 + 1)*(n^4 + 1)*(n^2 + 1)*(n + 1) + 1.

Original entry on oeis.org

1, 17, 131071, 64570081, 5726623061, 190734863281, 3385331888947, 38771752331201, 321685687669321, 2084647712458321, 11111111111111111, 50544702849929377, 201691918794585181, 720867993281778161, 2345488209948553531, 7037580381120954241
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2016

Keywords

Comments

a(n) = Phi_17(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Cf. similar sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), this sequence (k=17), A060891 (k=18), A269446 (k=19).

Programs

  • GAP
    List([0..20], n-> n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1); # G. C. Greubel, Apr 24 2019
  • Magma
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1: n in [0..20]]; // Vincenzo Librandi, Feb 27 2016
    
  • Mathematica
    Table[Cyclotomic[17, n], {n, 0, 15}]
  • PARI
    a(n)=n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
    
  • Sage
    [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1 +130918*x^2 +62343506*x^3 +4646748160*x^4 +102074708252*x^5 +878064150546*x^6 +3419813860214*x^7 +6502752956958*x^8 +6232856389160*x^9 +3004612851498*x^10 +701875014878*x^11 +73106078368*x^12 +2893069436*x^13 +31542430*x^14 +43674*x^15 +x^16)/(1 - x)^17.
Sum_{n>=0} 1/a(n) = 1.05883117453...

A063784 Primes that are the sum of cubes of divisors of some integer.

Original entry on oeis.org

73, 757, 1772893, 48551233240513, 378890487846991, 3156404483062657, 17390284913300671, 280343912759041771, 319913861581383373, 487014306953858713, 7824668707707203971, 8443914727229480773, 32564717507686012813, 48095468363380957093, 54811417636756749151
Offset: 1

Views

Author

Labos Elemer, Aug 17 2001

Keywords

Comments

Primes of the form p^6 + p^3 + 1 where p is a prime. - Amiram Eldar, Aug 16 2024

Examples

			sigma_3(9) = 1 + 27 + 729 = 757, a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[p^6 + p^3 + 1, {p, Prime[Range[500]]}], PrimeQ] (* Amiram Eldar, Aug 16 2024 *)
  • PARI
    { n=0; p=0; for (m=1, 10^9, p=nextprime(p+1); if(isprime(q=p^6 + p^3 + 1), write("b063784.txt", n++, " ", q); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 31 2009

Formula

Primes of form p = sigma_3(k).
From Amiram Eldar, Aug 16 2024: (Start)
a(n) = A001158(A063783(n)).
a(n) = A060883(A066100(n)). (End)

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A259369 a(n) = 1 + sigma(n)^3 + sigma(n)^6.

Original entry on oeis.org

3, 757, 4161, 117993, 46873, 2987713, 262657, 11394001, 4829007, 34018057, 2987713, 481912257, 7532281, 191116801, 191116801, 887533473, 34018057, 3518803081, 64008001, 5489105833, 1073774593, 2176828993, 191116801, 46656216001, 887533473, 5489105833
Offset: 1

Views

Author

Robert Price, Jun 25 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n), A060883 (n^6 + n^3 + 1).
Cf. A259370 (indices of primes in this sequence), A259371 (corresponding primes).

Programs

  • Magma
    [1+SumOfDivisors(n)^3+ SumOfDivisors(n)^6: n in [1..50]]; // Vincenzo Librandi, Jun 26 2015
  • Maple
    with(numtheory): A259369:=n->1+sigma(n)^3+sigma(n)^6: seq(A259369(n), n=1..40); # Wesley Ivan Hurt, Jun 29 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^6, {n, 10000}]
    Table[Cyclotomic[9, DivisorSigma[1, n]], {n, 10000}]
  • PARI
    a(n) = polcyclo(9, sigma(n)) \\ Michel Marcus, Jun 25 2015
    

Formula

a(n) = 1 + A000203(n)^3 + A000203(n)^6.
a(n) = A060883(A000203(n)). - Michel Marcus, Jun 25 2015

A162601 Primes of form k^6 + k^3 + 1.

Original entry on oeis.org

3, 73, 757, 262657, 1772893, 64008001, 85775383, 308933353, 729027001, 15625125001, 17596420453, 30841155073, 46656216001, 225200075257, 885843322057, 1126163480473, 2565165803383, 4608275809411, 5789338864921, 9685393594633, 16157823282721, 25002115044733
Offset: 1

Views

Author

Daniel Tisdale, Jul 07 2009

Keywords

Crossrefs

Programs

  • Maple
    select(isprime, [seq(k^6+k^3+1,k=1..1000)]); # Robert Israel, Jan 12 2025

Formula

A000040 INTERSECT A060883. - R. J. Mathar, May 31 2010

Extensions

Definition clarified, sequence corrected (757 inserted) and extended by R. J. Mathar, May 31 2010

A260076 Cyclotomic polynomial value Phi(9,n!).

Original entry on oeis.org

3, 3, 73, 46873, 191116801, 2985985728001, 139314069877248001, 16390160963204120064001, 4296582355504685658144768001, 2283380023591730863569702223872001, 2283380023591730815832761109839872000001, 4045146997974190235742912149285516869632000001
Offset: 0

Views

Author

Robert Price, Aug 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Cyclotomic[9, n!], {n, 0, 200}]

Formula

a(n) = A060883(n!) for n>0.

A326618 a(n) = n^18 + n^9 + 1.

Original entry on oeis.org

1, 3, 262657, 387440173, 68719738881, 3814699218751, 101559966746113, 1628413638264057, 18014398643699713, 150094635684419611, 1000000001000000001, 5559917315850179173, 26623333286045024257, 112455406962561892503, 426878854231297789441, 1477891880073843750001
Offset: 0

Views

Author

Richard N. Smith, Jul 15 2019

Keywords

Comments

a(n) = Phi_27(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=2), A002061 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), A269442 (k=17), A060891 (k=18), A269446 (k=19), A060892 (k=20), A269483 (k=21), A269486 (k=22), A060893 (k=24), A269527 (k=25), A266229 (k=26), this sequence (k=27), A270204 (k=28), A060894 (k=30), A060895 (k=32), A060896 (k=36).
Cf. A153440 (indices of prime terms).

Programs

  • Magma
    [n^18+n^9+1: n in [0..17]]; // Vincenzo Librandi, Jul 15 2019
    
  • Mathematica
    Table[n^18 + n^9 + 1, {n, 0, 17}] (* Vincenzo Librandi, Jul 15 2019 *)
    Table[Cyclotomic[27, n], {n, 0, 17}]
  • PARI
    a(n) = polcyclo(27, n); \\ Michel Marcus, Jul 20 2019
Showing 1-7 of 7 results.