A060796
Upper central divisor of n-th primorial.
Original entry on oeis.org
2, 3, 6, 15, 55, 182, 715, 3135, 15015, 81345, 448630, 2733549, 17490603, 114388729, 785147363, 5708795638, 43850489690, 342503171205, 2803419704514, 23622001517543, 201817933409378, 1793779635410490, 16342166369958702, 154171363634898185, 1518410187442699518, 15259831781575946565
Offset: 1
n = 8, q(8) = 2*3*5*7*11*13*17*19 = 9699690. Its 128th and 129th divisors are {3094, 3135}: a(8) = 3135, and 3094 < A000196(9699690) = 3114 < 3135. [Corrected by _M. F. Hasler_, Sep 20 2011]
Cf.
A060755,
A000196,
A002110,
A033677,
A060776,
A060777,
A061057,
A060795 (x),
A061060 (y-x),
A182987 (x+y),
A061030,
A061031,
A061032,
A061033,
A200744.
-
k = 1; Do[k *= Prime[n]; l = Divisors[k]; x = Length[l]; Print[l[[x/2 + 1]]], {n, 1, 24}] (* Ryan Propper, Jul 25 2005 *)
-
A060796(n) = divisors(prod(k=1,n,prime(k)))[2^(n-1)+1] \\ Requires stack size > 2^(n+5). - M. F. Hasler, Sep 20 2011
A060795
Write product of first n primes as x*y with x
Original entry on oeis.org
1, 2, 5, 14, 42, 165, 714, 3094, 14858, 79534, 447051, 2714690, 17395070, 114371070, 783152070, 5708587335, 43848093003, 342444658094, 2803119896185, 23619540863730, 201813981102615, 1793779293633437, 16342050964565645, 154170926013430326, 1518409177581024365
Offset: 1
n = 8: q(8) = 2*3*5*7*11*13*17*19 = 9699690. Its 128th and 129th divisors are {3094, 3135}: a(8) = 3094 and 3094 < A000196(9699690) = 3114 < 3135. [Corrected by _Colin Barker_, Oct 22 2010]
2*3*5*7 = 210 = 14*15 with difference of 1, so a(4) = 14.
Cf.
A000196,
A060776,
A060777,
A061057,
A060796 (y),
A061060 (y-x),
A182987 (x+y),
A061030,
A061031,
A061032,
A061033,
A060755,
A033677,
A200743.
-
F:= proc(n) local P,N,M;
P:= {seq(ithprime(i),i=1..n)};
N:= floor(sqrt(convert(P,`*`)));
M:= map(convert, combinat:-powerset(P),`*`);
max(select(`<=`,M,N))
end proc:
map(F, [$1..20]); # Robert Israel, Feb 22 2016
-
a[n_] := (m = Times @@ Prime[Range[n]] ; dd = Divisors[m]; dd[[Length[dd]/2 // Floor]]); Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Oct 15 2016 *)
-
a(n) = my(m=prod(i=1, n, prime(i))); divisors(m)[numdiv(m)\2]; \\ Michel Marcus, Feb 22 2016
A061033
Factorial splitting: write n! = x*y*z with x
Original entry on oeis.org
2, 2, 2, 2, 6, 4, 17, 24, 30, 42, 72, 112, 288, 420, 720, 1568, 1920, 3512, 16560, 19686, 16028, 71280, 182160, 184320, 552960, 2925648, 4885160, 12241152, 40191471, 71559680, 77631750, 217165824, 604653336, 368858880
Offset: 3
- Luc Kumps, personal communication.
a(10) and a(11) corrected and a(14)-a(31) from
Donovan Johnson, May 11 2010
Definition and a(14), a(18), a(24) are corrected, terms a(32) onward added by
Max Alekseyev, Apr 10 2022
A061032
Factorial splitting: write n! = x*y*z with x
Original entry on oeis.org
3, 4, 6, 10, 21, 36, 81, 168, 360, 810, 1872, 4480, 11088, 27720, 71280, 186368, 496128, 1347192, 3720960, 10407936, 29576988, 85322160, 249500160, 738904320, 2216712960, 6732000000, 20680540160, 64260000000, 201860859375
Offset: 3
- Luc Kumps, personal communication.
a(10) and a(11) corrected and a(14)-a(31) from
Donovan Johnson, May 11 2010
Definition and a(14), a(18), a(24) are corrected by
Max Alekseyev, Apr 10 2022
A061031
Factorial splitting: write n! = x*y*z with x
Original entry on oeis.org
2, 3, 5, 9, 16, 35, 70, 150, 336, 770, 1848, 4455, 10920, 27648, 70720, 185895, 496125, 1344000, 3706560, 10395840, 29568000, 85299200, 249356800, 738840960, 2216522880, 6730407936, 20678434920, 64248260076, 201838500864
Offset: 3
- Luc Kumps, personal communication.
a(10) and a(11) corrected and a(14)-a(31) from
Donovan Johnson, May 11 2010
Definition and a(14), a(18), a(24) are corrected by
Max Alekseyev, Apr 10 2022
A061057
Factorial splitting: write n! = x*y with x <= y and x maximal; sequence gives value of y-x.
Original entry on oeis.org
0, 1, 1, 2, 2, 6, 2, 18, 54, 30, 36, 576, 127, 840, 928, 3712, 20160, 93696, 420480, 800640, 1305696, 7983360, 55056804, 65318400, 326592000, 2286926400, 2610934480, 13680979200, 18906930876, 674165366496, 326850970500, 16753029012720, 16880461678080
Offset: 1
2! = 1*2, with difference of 1.
3! = 2*3, with difference of 1.
4! = 4*6, with difference of 2.
5! = 10*12, with difference of 2.
6! = 24*30, with difference of 6.
7! = 70*72 with difference of 2.
The corresponding central divisors are two units apart (equivalently, n!+1=A038507(n) is a square) for n = 4, 5, 7 (see A146968).
Cf.
A000142,
A060776,
A060777,
A060795,
A060796,
A061060,
A061030,
A061031,
A061032,
A061033,
A005563,
A038507,
A038667,
A056737,
A146968.
-
A060777 := proc(n) local d,nd ; d := sort(convert(numtheory[divisors](n!),list)) ; nd := nops(d) ; op(floor(1+nd/2),d) ; end:
A060776 := proc(n) local d,nd ; d := sort(convert(numtheory[divisors](n!),list)) ; nd := nops(d) ; op(floor(nd/2),d) ; end:
A061057 := proc(n) A060777(n)-A060776(n) ; end:
seq(A061057(n),n=2..27) ; # R. J. Mathar, Mar 14 2009
-
Do[ With[ {k = Floor[ Sqrt[ x! ] ] - Do[ If[ Mod[ x!, Floor[ Sqrt[ x! ] ] - n ] == 0, Return[ n ] ], {n, 0, 10000000} ]}, Print[ {x, "! =", k, x!/k, x!/k - k} ] ], {x, 3, 22} ]
f[n_] := Block[{k = Floor@ Sqrt[n! ]}, While[ Mod[n!, k] != 0, k-- ]; n!/k - k]; Table[f@n, {n, 2, 32}] (* Robert G. Wilson v, Jul 11 2009 *)
Table[d=Divisors[n!]; len=Length[d]; If[OddQ[len], 0, d[[1 + len/2]] - d[[len/2]]], {n, 34}] (* Vincenzo Librandi, Jan 02 2016 *)
-
for(k=2,25,d=divisors(k!);print(d[#d/2+1]-d[#d/2])) \\ Jaume Oliver Lafont, Mar 13 2009
-
from math import isqrt, factorial
from sympy import divisors
def A061057(n):
k = factorial(n)
m = max(d for d in divisors(k,generator=True) if d <= isqrt(k))
return k//m-m # Chai Wah Wu, Apr 06 2022
A061060
Write product of first n primes as x*y with x
Original entry on oeis.org
1, 1, 1, 1, 13, 17, 1, 41, 157, 1811, 1579, 18859, 95533, 17659, 1995293, 208303, 2396687, 58513111, 299808329, 2460653813, 3952306763, 341777053, 115405393057, 437621467859, 1009861675153, 6660853109087, 29075165225531
Offset: 1
a(4)=1: 2*3*5*7 = 210 = 14*15, so we can take x=14, y=15, with difference of 1.
Also: n=3: 2*3-5=1; n=4: 3*5-2*7=1; n=5: 5*11-2*3*7=13; n=6: 2*7*13-3*5*11=17; n=7: 5*11*13-2*3*7*17=1; n=8: 3*5*11*19-2*7*13*17=41
-
A061060aux := proc(l1,l2) local resul ; resul := product(l1[i],i=1..nops(l1)) ; resul := resul-product(l2[i],i=1..nops(l2)) ; RETURN(abs(resul)) ; end:
A061060 := proc(n) local plist,i,subl,resul,j,l1,l2,k,d ; plist := [] ; resul := 1 ; for i from 1 to n do resul := resul*ithprime(i) ; plist := [op(plist), ithprime(i)] ; od; for i from 1 to n/2 do subl := combinat[choose](plist,i) ; for j from 1 to nops(subl) do l1 := op(j,subl) ; l2 := convert(plist,set) minus convert(l1,set) ; d := A061060aux(l1,l2) ; if d < resul then resul := d ; fi ; od; od ; RETURN(resul) ; end:
for n from 3 to 19 do printf("%d,",A061060(n)) ; od ; # R. J. Mathar, Aug 26 2006 [This Maple program was attached to A121315. However I think it belongs here, so I renamed the variables and moved it to this entry. - N. J. A. Sloane, Sep 16 2005]
-
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Block[{arrayofnprimes = Array[Prime, n], primorial = Times @@ Array[Prime, n], diffmin = Infinity, adiff, sub}, If[n == 1, 1, Do[sub = Times @@ NthSubset[i, arrayofnprimes]; adiff = Abs[primorial/sub - sub]; If[adiff < diffmin, diffmin = adiff], {i, 2, 2^n/2}]; diffmin]]; Do[ Print@f@n, {n, 30}] (* Robert G. Wilson v, Sep 14 2006 *)
Terms a(16)-a(45) in b-file computed by
Jud McCranie, Apr 15 2000; Jan 12 2016
a(46)-a(60) in b-file from
Don Reble, Jul 11 2020
A355189
Factorial splitting: write n! = x*y*z with x <= y <= z and minimal z-x; sequence gives value of x.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 8, 14, 32, 70, 140, 324, 768, 1800, 4368, 10800, 27300, 70560, 184800, 494208, 1343680, 3704400, 10388250, 29560960, 85250880, 249318000, 738720000, 2216160000, 6729074352, 20675655000, 64245312000, 201819656500, 640760440320
Offset: 0
Cf.
A061030,
A061031,
A061032,
A061033,
A060776,
A060777,
A060795,
A060796,
A200743,
A200744,
A355190,
A355191,
A355192.
A355190
Factorial splitting: write n! = x*y*z with x <= y <= z and minimal z-x; sequence gives value of y.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 18, 35, 72, 160, 350, 770, 1848, 4455, 10920, 27648, 70720, 185895, 496125, 1344000, 3706560, 10395840, 29568000, 85299200, 249356800, 738840960, 2216522880, 6730407936, 20678434920, 64253314125, 201847852800, 640813814784, 2055410286592, 6658705461408, 21780889600000
Offset: 0
Cf.
A061030,
A061031,
A061032,
A061033,
A060776,
A060777,
A060795,
A060796,
A200743,
A200744,
A355189,
A355191,
A355192.
A355191
Factorial splitting: write n! = x*y*z with x <= y <= z and minimal z-x; sequence gives value of z.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 10, 20, 36, 72, 162, 352, 810, 1872, 4480, 11088, 27720, 71280, 186368, 496128, 1347192, 3720960, 10407936, 29576988, 85322160, 249500160, 738904320, 2216712960, 6732000000, 20680540160, 64257392640, 201852518400, 640832000000, 2055425699250, 6658777165824, 21781337550336
Offset: 0
Cf.
A061030,
A061031,
A061032,
A061033,
A060776,
A060777,
A060795,
A060796,
A200743,
A200744,
A355189,
A355190,
A355192.
Showing 1-10 of 11 results.
Comments