cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A060796 Upper central divisor of n-th primorial.

Original entry on oeis.org

2, 3, 6, 15, 55, 182, 715, 3135, 15015, 81345, 448630, 2733549, 17490603, 114388729, 785147363, 5708795638, 43850489690, 342503171205, 2803419704514, 23622001517543, 201817933409378, 1793779635410490, 16342166369958702, 154171363634898185, 1518410187442699518, 15259831781575946565
Offset: 1

Views

Author

Labos Elemer, Apr 27 2001

Keywords

Comments

Also: Write product of first n primes as x*y with x < y and x maximal; sequence gives value of y. Indeed, p(n)# = primorial(n) = A002110(n) is never a square for n >= 1; all exponents in the prime factorization are 1. Therefore primorial(n) has N = 2^n distinct divisors. Since this is an even number, the N divisors can be grouped in N/2 pairs {d(k), d(N+1-k)} with product equal to p(n)#. One of the two is always smaller and one is larger than sqrt(p(n)#). This sequence gives the (2^(n-1)+1)-th divisor, which is the smallest one larger than sqrt(p(n)#). - M. F. Hasler, Sep 20 2011

Examples

			n = 8, q(8) = 2*3*5*7*11*13*17*19 = 9699690. Its 128th and 129th divisors are {3094, 3135}: a(8) = 3135, and 3094 < A000196(9699690) = 3114 < 3135. [Corrected by _M. F. Hasler_, Sep 20 2011]
		

Crossrefs

Programs

  • Mathematica
    k = 1; Do[k *= Prime[n]; l = Divisors[k]; x = Length[l]; Print[l[[x/2 + 1]]], {n, 1, 24}] (* Ryan Propper, Jul 25 2005 *)
  • PARI
    A060796(n) = divisors(prod(k=1,n,prime(k)))[2^(n-1)+1] \\ Requires stack size > 2^(n+5). - M. F. Hasler, Sep 20 2011

Formula

a(n) = A033677(A002110(n)).
a(n) = A002110(n)/A060795(n). - M. F. Hasler, Mar 21 2022

Extensions

More terms from Ryan Propper, Jul 25 2005
a(24)-a(37) in b-file calculated from A182987 by M. F. Hasler, Sep 20 2011
a(38) from David A. Corneth, Mar 21 2022
a(39)-a(70) in b-file from Max Alekseyev, Apr 20 2022

A060795 Write product of first n primes as x*y with x

Original entry on oeis.org

1, 2, 5, 14, 42, 165, 714, 3094, 14858, 79534, 447051, 2714690, 17395070, 114371070, 783152070, 5708587335, 43848093003, 342444658094, 2803119896185, 23619540863730, 201813981102615, 1793779293633437, 16342050964565645, 154170926013430326, 1518409177581024365
Offset: 1

Views

Author

Labos Elemer, Apr 27 2001

Keywords

Comments

Or, lower central divisor of n-th primorial.
Subsequence of A005117 (squarefree numbers). - Michel Marcus, Feb 22 2016

Examples

			n = 8: q(8) = 2*3*5*7*11*13*17*19 = 9699690. Its 128th and 129th divisors are {3094, 3135}: a(8) = 3094 and 3094 < A000196(9699690) = 3114 < 3135. [Corrected by _Colin Barker_, Oct 22 2010]
2*3*5*7 = 210 = 14*15 with difference of 1, so a(4) = 14.
		

Crossrefs

Programs

  • Maple
    F:= proc(n) local P,N,M;
         P:= {seq(ithprime(i),i=1..n)};
         N:= floor(sqrt(convert(P,`*`)));
         M:= map(convert, combinat:-powerset(P),`*`);
         max(select(`<=`,M,N))
    end proc:
    map(F, [$1..20]); # Robert Israel, Feb 22 2016
  • Mathematica
    a[n_] := (m = Times @@ Prime[Range[n]] ; dd = Divisors[m]; dd[[Length[dd]/2 // Floor]]); Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Oct 15 2016 *)
  • PARI
    a(n) = my(m=prod(i=1, n, prime(i))); divisors(m)[numdiv(m)\2]; \\ Michel Marcus, Feb 22 2016

Formula

a(n) = A060775(A002110(n)). - Labos Elemer, Apr 27 2001
a(n) = A002110(n)/A060796(n). - M. F. Hasler, Mar 21 2022

Extensions

More terms from Ed Pegg Jr, May 28 2001
a(16)-a(23) computed by Jud McCranie, Apr 15 2000
a(24) and a(25) from Robert Israel, Feb 22 2016
a(25) corrected by Jean-François Alcover, Oct 15 2016
a(26)-a(33) in b-file from Amiram Eldar, Apr 09 2020
Up to a(38) using b-file of A060796, by M. F. Hasler, Mar 21 2022
a(39)-a(70) in b-file from Max Alekseyev, Apr 20 2022

A061030 Factorial splitting: write n! = x*y*z with x

Original entry on oeis.org

1, 2, 4, 8, 15, 32, 64, 144, 330, 768, 1800, 4368, 10800, 27300, 70560, 184800, 494208, 1343680, 3704400, 10388250, 29560960, 85250880, 249318000, 738720000, 2216160000, 6729074352, 20675655000, 64247758848, 201820667904
Offset: 3

Views

Author

Ed Pegg Jr, May 25 2001

Keywords

Examples

			For n = 6, 6! = 720 = 8*9*10, so x=8, y=9, z=10.
		

References

  • Luc Kumps, personal communication.

Crossrefs

Extensions

a(10) and a(11) corrected and a(14)-a(31) from Donovan Johnson, May 11 2010

A061032 Factorial splitting: write n! = x*y*z with x

Original entry on oeis.org

3, 4, 6, 10, 21, 36, 81, 168, 360, 810, 1872, 4480, 11088, 27720, 71280, 186368, 496128, 1347192, 3720960, 10407936, 29576988, 85322160, 249500160, 738904320, 2216712960, 6732000000, 20680540160, 64260000000, 201860859375
Offset: 3

Views

Author

Ed Pegg Jr, May 25 2001

Keywords

Comments

We first maximize x and then minimize z, which may be different from doing the opposite way around. For example, 7! = 15*16*21 = 14*18*20 is the case when absolute maximum of x (=15) and absolute minimum of z (=20) cannot be achieved together. - Max Alekseyev, Jun 18 2022

References

  • Luc Kumps, personal communication.

Crossrefs

Extensions

a(10) and a(11) corrected and a(14)-a(31) from Donovan Johnson, May 11 2010
Definition and a(14), a(18), a(24) are corrected by Max Alekseyev, Apr 10 2022

A061057 Factorial splitting: write n! = x*y with x <= y and x maximal; sequence gives value of y-x.

Original entry on oeis.org

0, 1, 1, 2, 2, 6, 2, 18, 54, 30, 36, 576, 127, 840, 928, 3712, 20160, 93696, 420480, 800640, 1305696, 7983360, 55056804, 65318400, 326592000, 2286926400, 2610934480, 13680979200, 18906930876, 674165366496, 326850970500, 16753029012720, 16880461678080
Offset: 1

Views

Author

Ed Pegg Jr, May 28 2001

Keywords

Comments

Difference between central divisors of n!. - Jaume Oliver Lafont, Mar 13 2009
For n > 1, n! will never be a square, because of primes in the last half of the factors. Therefore the divisors of n! come in pairs (x,y) with x*y = n! and x < y. The sequence gives the difference y-x between the pair nearest to the square root of n!. - Alois P. Heinz, Jul 06 2009
a(n) = 2 iff n belongs to A146968. - Max Alekseyev, Feb 06 2010

Examples

			2! = 1*2, with difference of 1.
3! = 2*3, with difference of 1.
4! = 4*6, with difference of 2.
5! = 10*12, with difference of 2.
6! = 24*30, with difference of 6.
7! = 70*72 with difference of 2.
The corresponding central divisors are two units apart (equivalently, n!+1=A038507(n) is a square) for n = 4, 5, 7 (see A146968).
		

Crossrefs

Programs

  • Maple
    A060777 := proc(n) local d,nd ; d := sort(convert(numtheory[divisors](n!),list)) ; nd := nops(d) ; op(floor(1+nd/2),d) ; end:
    A060776 := proc(n) local d,nd ; d := sort(convert(numtheory[divisors](n!),list)) ; nd := nops(d) ; op(floor(nd/2),d) ; end:
    A061057 := proc(n) A060777(n)-A060776(n) ; end:
    seq(A061057(n),n=2..27) ; # R. J. Mathar, Mar 14 2009
  • Mathematica
    Do[ With[ {k = Floor[ Sqrt[ x! ] ] - Do[ If[ Mod[ x!, Floor[ Sqrt[ x! ] ] - n ] == 0, Return[ n ] ], {n, 0, 10000000} ]}, Print[ {x, "! =", k, x!/k, x!/k - k} ] ], {x, 3, 22} ]
    f[n_] := Block[{k = Floor@ Sqrt[n! ]}, While[ Mod[n!, k] != 0, k-- ]; n!/k - k]; Table[f@n, {n, 2, 32}] (* Robert G. Wilson v, Jul 11 2009 *)
    Table[d=Divisors[n!]; len=Length[d]; If[OddQ[len], 0, d[[1 + len/2]] - d[[len/2]]], {n, 34}] (* Vincenzo Librandi, Jan 02 2016 *)
  • PARI
    for(k=2,25,d=divisors(k!);print(d[#d/2+1]-d[#d/2])) \\ Jaume Oliver Lafont, Mar 13 2009
    
  • Python
    from math import isqrt, factorial
    from sympy import divisors
    def A061057(n):
        k = factorial(n)
        m = max(d for d in divisors(k,generator=True) if d <= isqrt(k))
        return k//m-m # Chai Wah Wu, Apr 06 2022

Formula

a(n) = A060777(n) - A060776(n).
a(n) = A056737(A000142(n)). - Pontus von Brömssen, Jul 15 2023

Extensions

More terms from Dean Hickerson, Jun 13 2001
Edited by N. J. A. Sloane Jul 07 2009 at the suggestion of R. J. Mathar and Alois P. Heinz
a(41) from Robert G. Wilson v, Oct 03 2014

A355189 Factorial splitting: write n! = x*y*z with x <= y <= z and minimal z-x; sequence gives value of x.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 14, 32, 70, 140, 324, 768, 1800, 4368, 10800, 27300, 70560, 184800, 494208, 1343680, 3704400, 10388250, 29560960, 85250880, 249318000, 738720000, 2216160000, 6729074352, 20675655000, 64245312000, 201819656500, 640760440320
Offset: 0

Views

Author

Max Alekseyev, Jun 23 2022

Keywords

Comments

Apparently we have x < y < z for all n > 9. If so, using strict inequalities x < y < z in the definition would make the sequence undefined for n < 3 and affect only a(9) by switching from 9! = 70*72*72 to 9! = 63*72*80.

Crossrefs

A355190 Factorial splitting: write n! = x*y*z with x <= y <= z and minimal z-x; sequence gives value of y.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 18, 35, 72, 160, 350, 770, 1848, 4455, 10920, 27648, 70720, 185895, 496125, 1344000, 3706560, 10395840, 29568000, 85299200, 249356800, 738840960, 2216522880, 6730407936, 20678434920, 64253314125, 201847852800, 640813814784, 2055410286592, 6658705461408, 21780889600000
Offset: 0

Views

Author

Max Alekseyev, Jun 23 2022

Keywords

Crossrefs

A355191 Factorial splitting: write n! = x*y*z with x <= y <= z and minimal z-x; sequence gives value of z.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 10, 20, 36, 72, 162, 352, 810, 1872, 4480, 11088, 27720, 71280, 186368, 496128, 1347192, 3720960, 10407936, 29576988, 85322160, 249500160, 738904320, 2216712960, 6732000000, 20680540160, 64257392640, 201852518400, 640832000000, 2055425699250, 6658777165824, 21781337550336
Offset: 0

Views

Author

Max Alekseyev, Jun 23 2022

Keywords

Comments

Apparently we have x < y < z for all n > 9. If so, using strict inequalities x < y < z in the definition would make the sequence undefined for n < 3 and affect only a(9) by switching from 9! = 70*72*72 to 9! = 63*72*80.

Crossrefs

A355192 Factorial splitting: write n! = x*y*z with x <= y <= z and minimal z-x; sequence gives value of z-x.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 6, 4, 2, 22, 28, 42, 72, 112, 288, 420, 720, 1568, 1920, 3512, 16560, 19686, 16028, 71280, 182160, 184320, 552960, 2925648, 4885160, 12080640, 32861900, 71559680, 77631750, 217165824, 604653336, 368858880, 4069377144, 7919402400, 17537715360, 87352688640, 127718553600
Offset: 0

Views

Author

Max Alekseyev, Jun 23 2022

Keywords

Comments

a(n) <= A061033(n).
n=61 gives the smallest example where the value of x is not maximal (cf. A061030) and the value of z is not minimal.
Apparently we have x < y < z for all n > 9. If so, using strict inequalities x < y < z in the definition would make the sequence undefined for n < 3 and affect only a(9) by switching from 9! = 70*72*72 to 9! = 63*72*80.

Crossrefs

Showing 1-9 of 9 results.