cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A094133 Leyland primes: 3, together with primes of form x^y + y^x, for x > y > 1.

Original entry on oeis.org

3, 17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193, 4318114567396436564035293097707729426477458833, 5052785737795758503064406447721934417290878968063369478337
Offset: 1

Views

Author

Lekraj Beedassy, May 04 2004

Keywords

Comments

Contains A061119 as a subsequence.

Examples

			2^1 + 1^2, 3^2 + 2^3, 9^2 + 2^9, 15^2 + 2^15, 21^2 + 2^21, 33^2 + 2^33, 24^5 + 5^24, 56^3 + 3^56, 32^15 + 15^32, 54^7 + 7^54, 38^33 + 33^38.
		

Crossrefs

Cf. A061119 (primes where one of x,y is 2), A064539 (non-2 values where one of x,y is 2), A253471 (non-3 values where one of x,y is 3), A073499 (subset listing y where x = y+1), A076980 (Leyland numbers).

Programs

  • Maple
    N:= 10^100: # to get all terms <= N
    A:= {3}:
    for n from 2 while 2*n^n < N do
      for k from n+1 do if igcd(n,k)=1 then
         a:= n^k + k^n;
         if a > N then break fi;
         if isprime(a) then A:= A union {a} fi fi;
      od
    od:
    A; # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 13 2015
  • Mathematica
    a = {3}; Do[Do[k = m^n + n^m; If[PrimeQ[k], AppendTo[a, k]], {m, 2, n}], {n, 2, 100}]; Union[a] (* Artur Jasinski *)
    Prepend[Flatten[Map[Function[n, Map[Function[m, If[PrimeQ[m^n + n^m], m^n + n^m, Sequence[], Nothing]], Range[2, n]]], Range[2, 50]], 1], 3]//Union (* Mikk Heidemaa, Mar 27 2025 *)
  • PARI
    f(x)=my(L=log(x)); L/lambertw(L) \\ finds y such that y^y == x
    list(lim)=my(v=List()); for(x=2,f(lim/2), my(y=x+1,t); while((t=x^y+y^x)<=lim, if(ispseudoprime(t), listput(v,t)); y+=2)); Set(v) \\ Charles R Greathouse IV, Oct 28 2014

Extensions

Corrected and extended by Jens Kruse Andersen, Oct 26 2007
Edited by Hans Havermann, Apr 10 2015

A215434 Primes of form 2^k + k^2 - 1.

Original entry on oeis.org

2, 7, 31, 1123, 1180591620717411308323, 21778071482940061661655974875633165551139, 89202980794122492566142873090593446023942979, 1569275433846670190958947355801916604025588861116008664323
Offset: 1

Views

Author

Vincenzo Librandi, Sep 03 2012

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 2^n+n^2-1];
  • Mathematica
    Select[Table[2^n + n^2 - 1, {n, 0, 300}], PrimeQ]

A075896 Primes of the form 2^k - k^2.

Original entry on oeis.org

7, 79, 431, 130783, 523927, 2251799813682647, 9007199254738183, 2417851639229258349405791, 9671406556917033397642519, 664613997892457936451903530140158127, 784637716923335095479473677900958302012794430558004278391
Offset: 1

Views

Author

Zak Seidov, Oct 17 2002

Keywords

Crossrefs

Primes in A024012.

Programs

  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 2^n-n^2]; // Vincenzo Librandi, Dec 07 2011
  • Mathematica
    Select[Table[2^n - n^2, {n, 500}], PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
  • PARI
    for(n=2,10^7,if(isprime(2^n-n^2),print1(2^n-n^2",")))
    

Formula

a(n) = A024012(A072180(n)). - Elmo R. Oliveira, Feb 18 2025

Extensions

More terms from Ralf Stephan, Mar 30 2003

A064539 Numbers n such that 2^n + n^2 is prime.

Original entry on oeis.org

1, 3, 9, 15, 21, 33, 2007, 2127, 3759, 29355, 34653, 57285, 99069, 1933695
Offset: 1

Views

Author

Jason Earls, Oct 16 2001

Keywords

Comments

Values 2^2007+2007^2, 2^2127+2127^2, 2^3759+3759^2 were proved prime with Primo.
n is always an odd multiple of 3 (except for the first term), i.e., a(n) is a subsequence of A016945. - Lekraj Beedassy, Jan 01 2007
Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 14 2019

References

  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 165 pp. 30, 160, Ellipses Paris 2004.

Crossrefs

Programs

  • PARI
    for(n=1,5000, if(isprime(2^n+n^2),print(n)))

Extensions

a(10)-a(13) from Hugo Pfoertner, Jun 26 2004
a(14) from Ryan Propper, May 11 2023. n=1933695 corresponds to a probable prime with 582101 digits, and was PRP tested with PFGW.

A173907 Primes of form x^y+y^x where x and y are composite numbers.

Original entry on oeis.org

43143988327398957279342419750374600193, 5052785737795758503064406447721934417290878968063369478337, 205688069665150755269371147819668813122841983204711281293004769, 3329896365316142756322307042065269797678257903507506764421250291562312417, 814539297859635326656252304265822609649892589675472598580095801187688932052096060144958129
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 02 2010

Keywords

Examples

			The first 5 terms are 15^32+32^15, 33^38+38^33, 8^69+69^8, 9^76+76^9, 21^68+68^21.
		

Crossrefs

Programs

  • Maple
    N:= 10^100: # for terms <= N
    R:= NULL:
    for x from 4 while 2*x^x < N do
      if isprime(x) then next fi;
      for y from x+1 do
        if igcd(x,y) > 1 or isprime(y) then next fi;
        q:= x^y + y^x;
        if q > N then break fi;
        if isprime(q) then R:= R,q  fi;
    od od:
    sort([R]); # Robert Israel, Jul 11 2025

Extensions

a(3)-a(5) from Franklin T. Adams-Watters, Mar 22 2010
Definition corrected by N. J. A. Sloane, Apr 13 2010

A182329 Primes of the form 5^n + n^2.

Original entry on oeis.org

29, 641, 15661, 244140769, 55511151231257827021181583404541018541
Offset: 1

Views

Author

Alex Ratushnyak, Apr 25 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[5^n + n^2, {n, 0, 500}], PrimeQ] (* T. D. Noe, Apr 25 2012 *)

A173909 Numbers n such that prime(n) can be expressed as x+y in at least one way such that x^y + y^x is prime and 1 < x <= y.

Original entry on oeis.org

3, 5, 7, 9, 10, 15, 17, 18, 20, 24, 29, 32, 39, 42, 47, 55, 57, 62
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 02 2010

Keywords

Comments

From Jon E. Schoenfield, Apr 12 2014: (Start)
All terms through 62 (as well as the term 83, which is in the sequence, but might not be next) were confirmed as having a corresponding prime expression of the form x^y + y^x using the online Magma Calculator. The next terms after 62 are probably 80, 83, 84, 87, 94, 129, 135, 136, 140, 142, 146, 149, 152, 158, 175, 185, 194, 199, 205, 206, 207, 221, 222, 227; these are the only values of n in 62 < n <= 236 for which at least one pair (x,y) yields a value of x^y + y^x that is a probable prime. Of these (at least probable) terms, 83 is definitely in the sequence (as 9^422 + 422^9 is definitely prime, and 9+422=431=prime(83)); for the rest, the probably-prime x^y + y^x with the smallest x (there may be more than one) is as follows:
prime(80) = 409: 91^318 + 318^91;
prime(84) = 433: 111^322 + 322^111;
prime(87) = 449: 214^235 + 235^214;
prime(94) = 491: 20^471 + 471^20;
prime(129) = 727: 91^636 + 636^91;
prime(135) = 761: 98^663 + 663^98;
prime(136) = 769: 364^405 + 405^364;
prime(140) = 809: 365^444 + 444^365;
prime(142) = 821: 87^734 + 734^87;
prime(146) = 839: 329^510 + 510^329;
prime(149) = 859: 423^436 + 436^423;
prime(152) = 881: 291^590 + 590^291;
prime(158) = 929: 441^488 + 488^441;
prime(175) = 1039: 325^714 + 714^325;
prime(185) = 1103: 513^590 + 590^513;
prime(194) = 1181: 278^903 + 903^278;
prime(199) = 1217: 61^1156 + 1156^61;
prime(205) = 1259: 101^1158 + 1158^101;
prime(206) = 1277: 394^883 + 883^394;
prime(207) = 1279: 376^903 + 903^376;
prime(221) = 1381: 634^747 + 747^634;
prime(222) = 1399: 384^1015 + 1015^384;
prime(227) = 1433: 397^1036 + 1036^397. (End)

Examples

			3 is in the sequence because 2^3 + 3^2 is prime and 2+3 = 5 = 3rd prime;
5 is in the sequence because 2^9 + 9^2 is prime and 2+9 = 11 = 5th prime;
7 is in the sequence because 2^15 + 15^2 is prime and 2+15 = 17 = 7th prime;
9 is in the sequence because 2^21 + 21^2 is prime and 2+21 = 23 = 9th prime;
10 is in the sequence because 5^24 + 24^5 is prime and 5+24 = 29 = 10th prime.
		

Crossrefs

Extensions

Constraint "0Jon E. Schoenfield (after comments from R. J. Mathar regarding missing terms and from Wolfdieter Lang noting that the existing definition would make this sequence identical to A000027), Apr 12 2014

A182328 Primes of the form 4^n + n^2.

Original entry on oeis.org

5, 73, 1049, 16433, 67109033, 1237940039285380274899126249
Offset: 1

Views

Author

Alex Ratushnyak, Apr 25 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[4^n + n^2, {n, 0, 200}], PrimeQ] (* T. D. Noe, Apr 25 2012 *)

A182357 Primes of the form 2^n + n^2 + 2.

Original entry on oeis.org

3, 5, 19, 59, 179, 8363, 131363, 134218459, 2147484611, 49039857307708443467467104868809893875799651909875303859, 3291009114642412084309938365114701009965471731267159726697262571
Offset: 1

Views

Author

Alex Ratushnyak, Apr 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[2^n+n^2+2,{n,1000}],PrimeQ] (* Harvey P. Dale, Jul 22 2012 *)

Extensions

More terms (a(10) and a(11)) from Harvey P. Dale, Jul 22 2012
Showing 1-9 of 9 results.