cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A094133 Leyland primes: 3, together with primes of form x^y + y^x, for x > y > 1.

Original entry on oeis.org

3, 17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193, 4318114567396436564035293097707729426477458833, 5052785737795758503064406447721934417290878968063369478337
Offset: 1

Views

Author

Lekraj Beedassy, May 04 2004

Keywords

Comments

Contains A061119 as a subsequence.

Examples

			2^1 + 1^2, 3^2 + 2^3, 9^2 + 2^9, 15^2 + 2^15, 21^2 + 2^21, 33^2 + 2^33, 24^5 + 5^24, 56^3 + 3^56, 32^15 + 15^32, 54^7 + 7^54, 38^33 + 33^38.
		

Crossrefs

Cf. A061119 (primes where one of x,y is 2), A064539 (non-2 values where one of x,y is 2), A253471 (non-3 values where one of x,y is 3), A073499 (subset listing y where x = y+1), A076980 (Leyland numbers).

Programs

  • Maple
    N:= 10^100: # to get all terms <= N
    A:= {3}:
    for n from 2 while 2*n^n < N do
      for k from n+1 do if igcd(n,k)=1 then
         a:= n^k + k^n;
         if a > N then break fi;
         if isprime(a) then A:= A union {a} fi fi;
      od
    od:
    A; # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 13 2015
  • Mathematica
    a = {3}; Do[Do[k = m^n + n^m; If[PrimeQ[k], AppendTo[a, k]], {m, 2, n}], {n, 2, 100}]; Union[a] (* Artur Jasinski *)
    Prepend[Flatten[Map[Function[n, Map[Function[m, If[PrimeQ[m^n + n^m], m^n + n^m, Sequence[], Nothing]], Range[2, n]]], Range[2, 50]], 1], 3]//Union (* Mikk Heidemaa, Mar 27 2025 *)
  • PARI
    f(x)=my(L=log(x)); L/lambertw(L) \\ finds y such that y^y == x
    list(lim)=my(v=List()); for(x=2,f(lim/2), my(y=x+1,t); while((t=x^y+y^x)<=lim, if(ispseudoprime(t), listput(v,t)); y+=2)); Set(v) \\ Charles R Greathouse IV, Oct 28 2014

Extensions

Corrected and extended by Jens Kruse Andersen, Oct 26 2007
Edited by Hans Havermann, Apr 10 2015

A072180 Numbers k such that 2^k - k^2 is prime.

Original entry on oeis.org

5, 7, 9, 17, 19, 51, 53, 81, 83, 119, 189, 219, 227, 301, 455, 461, 623, 2037, 2221, 2455, 3547, 5515, 6825, 8303, 9029, 12103, 49989, 55525, 64773, 80307, 119087, 141915, 192023, 205933, 301683, 307407
Offset: 1

Views

Author

Daniel Gronau (Daniel.Gronau(AT)gmx.de), Jun 30 2002

Keywords

Comments

The numbers corresponding to k = 2037, 2221, 3547 and 5515 have been certified prime with Primo. - Rick L. Shepherd, Nov 10 2002
The remaining k's > 1000 correspond only to probable primes.
Certainly k must be odd. Let N(k) = 2^k - k^2. Additional restrictions come from the facts that 7 | N(k) if k is in {2, 4, 5, 6, 10, 15} mod 21 and 17 | N(k) if k is in {31, 57, 61, 71, 107, 109, 113, 131} mod 136. - Daniel Gronau, Jul 06 2002
Henri Lifchitz found the terms > 40000 in 2001 and 119087 in March 2002. - Hugo Pfoertner, Nov 16 2004

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 2^n - n^2], Print[n]], {n, 1, 22850, 2}]
  • PARI
    is(n)=isprime(2^n-n^2) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Edited and extended by Robert G. Wilson v, Jul 01 2002
More terms from Hugo Pfoertner, Nov 16 2004
More terms from Henri Lifchitz submitted by Ray Chandler, Mar 02 2007

A061119 Primes in the sequence n^2 + 2^n (A001580).

Original entry on oeis.org

3, 17, 593, 32993, 2097593, 8589935681
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2001

Keywords

Comments

p and p^2 + 2^p are both prime only for p=3. All positive n satisfy the congruence n=3 (mod 6). - Lekraj Beedassy, Sep 07 2004
For values of n, see A064539. - Lekraj Beedassy, Jan 01 2007
The next term has 605 digits. - Harvey P. Dale, Jul 19 2017

Examples

			a(3) = 593 = 2^9 + 9^2.
a(4) = 32993 = 2^15 + 15^2.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 165 pp. 30; 160, Ellipses Paris 2004.

Crossrefs

Subsequence of A094133.

Programs

  • Mathematica
    Select[Table[n^2+2^n,{n,1000}],PrimeQ] (* Harvey P. Dale, Jul 19 2017 *)
  • PARI
    for(n=1,10^7, if(isprime(n^2+2^n),print(n^2+2^n)))

Formula

a(n) = A001580(A064539(n)). - Elmo R. Oliveira, Feb 18 2025

Extensions

More terms from Jason Earls, Aug 09 2001. Next term too large to include.

A109216 Smallest factor of 2^(2n+1)+(2n+1)^2.

Original entry on oeis.org

3, 17, 3, 3, 593, 3, 3, 32993, 3, 3, 2097593, 3, 3, 73, 3, 3, 8589935681, 3, 3, 17, 3, 3, 11, 3, 3, 83, 3, 3, 11, 3, 3, 17, 3, 3, 857, 3, 3, 71329, 3, 3, 59, 3, 3, 19, 3, 3, 11, 3, 3, 17, 3, 3, 4561633, 3, 3, 2940725100673, 3, 3, 193, 3, 3, 1867, 3, 3, 17, 3, 3, 44449, 3, 3, 19, 3, 3
Offset: 0

Views

Author

Zak Seidov, Jun 24 2005

Keywords

Comments

For n={0, 1, 4, 7, 10, 16, 1003, 1063, 1879, 14677, 17326, 28642, 49534} we have the only primes of the form 2^(2n+1)+(2n+1)^2: A064539. Cases 2n+1 == 1, 2 (mod 3) are trivial and may be omitted.

Crossrefs

Programs

  • Mathematica
    Table[ With[ {k=2}, FactorInteger[ n^k + k^n]] [[1, 1]], {n, 1, 145, 2}]

Extensions

More terms from Robert G. Wilson v, Jun 24 2005

A253471 Numbers k such that 3^k + k^3 is prime.

Original entry on oeis.org

2, 56, 10112, 63880, 78296, 125330, 222748, 1839730
Offset: 1

Views

Author

Michel Lagneau, Jan 01 2015

Keywords

Comments

All terms == 2 or 4 mod 6. - Robert Israel, Jan 01 2015

Examples

			2 is in the sequence because 3^2 + 2^3 = 17 is prime.
56 is in the sequence because 3^56 + 56^3 = 523347633027360537213687137 is prime.
		

Crossrefs

Cf. A001585 (3^n + n^3), A064539 (2^n + n^2 is prime), A094133 (Leyland primes).

Programs

  • Maple
    select(t -> isprime(3^t+t^3), [seq(seq(6*i+j, j=[2,4]), i=0..100)]); # Robert Israel, Jan 01 2015
  • Mathematica
    Do[If[PrimeQ[3^n+n^3], Print[n]], {n, 0, 12000}]
  • PARI
    is(n)=ispseudoprime(3^n+n^3) \\ Charles R Greathouse IV, Jun 06 2017

Extensions

a(4)-a(7) from Hans Havermann, Apr 30 2015
a(8) from Ryan Propper, Jun 27 2023

A276203 Numbers k such that k^9 + 9^k is prime.

Original entry on oeis.org

2, 76, 122, 422, 2300, 5090, 7166, 58046, 91382, 234178, 314738
Offset: 1

Views

Author

Felix Fröhlich, Aug 27 2016

Keywords

Comments

Numbers k such that A185277(k) is prime.

Examples

			2 is a term of the sequence, because A185277(2) = 593 is prime.
		

Crossrefs

Programs

  • PARI
    is(n) = ispseudoprime(n^9+9^n)
Showing 1-6 of 6 results.