A061393 Number of appearances of n in sequence defined by b(k) = b(floor(k/3)) + b(ceiling(k/3)) with b(0)=0 and b(1)=1, i.e., in A061392.
1, 2, 4, 2, 10, 2, 4, 2, 28, 2, 4, 2, 10, 2, 4, 2, 82, 2, 4, 2, 10, 2, 4, 2, 28, 2, 4, 2, 10, 2, 4, 2, 244, 2, 4, 2, 10, 2, 4, 2, 28, 2, 4, 2, 10, 2, 4, 2, 82, 2, 4, 2, 10, 2, 4, 2, 28, 2, 4, 2, 10, 2, 4, 2, 730, 2, 4, 2, 10, 2, 4, 2, 28, 2, 4, 2, 10, 2, 4, 2, 82, 2, 4, 2, 10, 2, 4, 2, 28, 2, 4, 2
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- Michael Gilleland, Some Self-Similar Integer Sequences
- R. Stephan, Some divide-and-conquer sequences ...
- R. Stephan, Table of generating functions
- Index entries for sequences related to binary expansion of n
Crossrefs
Cf. A061392.
Programs
-
PARI
A061393(n) = if(!n,1,(1+3^valuation(n,2))); \\ Antti Karttunen, Sep 30 2018
Formula
a(2n) = 3a(n)-2; a(2n+1) = 2.
G.f.: 1/(1-x) + Sum_{k>=0} 3^k*x^2^k/(1 - x^2^(k+1)). - Ralf Stephan, Jun 13 2003
Comments