cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A061987 Number of times n-th distinct value is repeated in sequence b(k) = 1 + b(floor(k/2)) + b(floor(k/3)) with b(0) = 0, i.e., in A061984; also number of times n-th distinct row is repeated in square array T(n,k) = T(n-1,k) + T(n-1,floor(k/2)) + T(n-1,floor(k/3)) with T(0,0) = 1, i.e., in A061980.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 6, 3, 5, 4, 12, 6, 10, 8, 9, 15, 12, 20, 16, 18, 30, 24, 27, 13, 32, 36, 60, 48, 54, 26, 64, 72, 81, 39, 96, 108, 52, 128, 144, 162, 78, 192, 216, 104, 139, 117, 288, 324, 156, 384, 432, 208, 278, 234, 576, 648, 312, 417, 351, 864, 416, 556
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Comments

For n > 0: a(n) = A003586(n+1) - A003586(n) and a(A084791(n)) = A084788(n).
Also number of times A160519(n+1) is repeated in A088468. - Reinhard Zumkeller, May 16 2009
In the 14th century Levi Ben Gerson proved that a(n) > 1 for all n > 6; see A003586, A235365, A235366, A236210. - Jonathan Sondow, Jan 20 2014

Programs

  • Haskell
    import Data.List (group)
    a061987 n = a061987_list !! n
    a061987_list = map length $ group a061984_list
    -- Reinhard Zumkeller, Jan 11 2014

Formula

a(n) = A061986(A061985(n)).

Extensions

More terms from Reinhard Zumkeller, Jun 03 2003

A061985 Values which can occur in sequence b(k) = 1 + b(floor(k/2)) + b(floor(k/3)) with b(0) = 0, i.e., in A061984.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 15, 19, 20, 21, 27, 32, 36, 37, 47, 48, 54, 64, 65, 80, 85, 92, 112, 113, 114, 135, 150, 158, 193, 199, 200, 228, 263, 264, 273, 329, 350, 351, 387, 457, 464, 474, 558, 614, 615, 616, 661, 787, 815, 826, 946, 1072, 1073, 1081, 1136
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Crossrefs

Programs

  • Haskell
    a061985 n = a061985_list !! n
    a061985_list = f (-1) a061984_list where
       f u (v:vs) = if v == u then f u vs else v : f v vs
    -- Reinhard Zumkeller, Jan 11 2014

Formula

a(n) = a(n-1) + C(A022328(n) + A022329(n), A022328(n)). - David Wasserman, Nov 17 2005

A061986 Number of times n appears in sequence b(k) = 1 + b(floor(k/2)) + b(floor(k/3)) with b(0) = 0, i.e., in A061984.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 2, 1, 3, 0, 0, 4, 2, 0, 0, 6, 0, 0, 0, 3, 5, 4, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 6, 0, 0, 0, 10, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 15, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Formula

If n is not in A061985 then a(n)=0, otherwise if n=A061985(m) then a(n) = A061987(m).

A088468 a(0) = 1, a(n) = a(floor(n/2)) + a(floor(n/3)) for n > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 7, 8, 9, 9, 9, 12, 12, 12, 12, 13, 13, 16, 16, 16, 16, 16, 16, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 33, 33, 33, 33, 33, 33, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 38, 38, 48
Offset: 0

Views

Author

Michael Somos, Oct 02 2003

Keywords

Comments

Record values greater than 1 occur at 3-smooth numbers: A160519(n)=a(A003586(n)) and A160519(m)A003586(n). - Reinhard Zumkeller, May 16 2009

Crossrefs

Equals A061984(n) + 1.

Programs

  • Mathematica
    a[0]=1;a[n_]:=a[n]=a[Floor[n/2]]+a[Floor[n/3]];Array[a,75,0] (* Harvey P. Dale, Aug 23 2020 *)
  • PARI
    a(n)=if(n<1,n==0,a(n\2)+a(n\3))

Formula

Limit_{n->oo} a(n)/n = 0, as proved in Michael Penn's Youtube video (see Links). Michael Penn states in the video that this is a simplification of a problem of Paul Erdős, where the original problem is to show that limit_{n->oo} b(n)/n = 12/log(432) for b(0) = 1, b(n) = b(floor(n/2)) + b(floor(n/3)) + b(floor(n/6)) for n > 0 ({b(n)} is the sequence A007731). - Jianing Song, Sep 27 2023

A007731 a(n) = a(floor(n/2)) + a(floor(n/3)) + a(floor(n/6)), with a(0) = 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 9, 15, 15, 17, 19, 19, 19, 29, 29, 29, 29, 31, 31, 41, 41, 41, 41, 41, 41, 55, 55, 55, 57, 57, 57, 57, 57, 59, 59, 59, 59, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 103, 103, 103, 103, 103, 103, 117, 117
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a007731 n = a007731_list !! n
    a007731_list = 1 : (zipWith3 (\u v w -> u + v + w)
       (map (a007731 . (`div` 2)) [1..])
       (map (a007731 . (`div` 3)) [1..])
       (map (a007731 . (`div` 6)) [1..]))
    -- Reinhard Zumkeller, Jan 11 2014
    
  • Maple
    A007731 := proc(n) option remember; if n=0 then RETURN(1) else RETURN( A007731(trunc(n/2))+A007731(trunc(n/3))+A007731(trunc(n/6))); fi; end;
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(floor(n/i)), i=[2, 3, 6]))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Sep 27 2023
  • Mathematica
    a[n_] := a[n] = a[Floor[n/2]] + a[Floor[n/3]] + a[Floor[n/6]] ; a[0] = 1; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 06 2014 *)
  • PARI
    a(n)=if(n<5, 2*n+1, a(n\2) + a(n\3) + a(n\6)) \\ Charles R Greathouse IV, Feb 08 2017

Formula

From given link, a(n) is asymptotic to c*n where c = 12/log(432) = 1.97744865... - Benoit Cloitre, Dec 18 2002

Extensions

Name clarified by Michel Marcus, Apr 10 2025

A061980 Square array A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1, read by antidiagonals.

Original entry on oeis.org

1, 0, 3, 0, 2, 9, 0, 1, 8, 27, 0, 0, 6, 26, 81, 0, 0, 4, 23, 80, 243, 0, 0, 3, 20, 76, 242, 729, 0, 0, 3, 17, 72, 237, 728, 2187, 0, 0, 1, 17, 66, 232, 722, 2186, 6561, 0, 0, 1, 11, 66, 222, 716, 2179, 6560, 19683, 0, 0, 1, 11, 54, 222, 701, 2172, 6552, 19682, 59049
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Examples

			Array begins as:
    1,   0,   0,   0,   0,   0,   0, ...;
    3,   2,   1,   0,   0,   0,   0, ...;
    9,   8,   6,   4,   3,   3,   1, ...;
   27,  26,  23,  20,  17,  17,  11, ...;
   81,  80,  76,  72,  66,  66,  54, ...;
  243, 242, 237, 232, 222, 222, 202, ...;
  729, 728, 722, 716, 701, 701, 671, ...;
Antidiagonal rows begin as:
  1;
  0, 3;
  0, 2, 9;
  0, 1, 8, 27;
  0, 0, 6, 26, 81;
  0, 0, 4, 23, 80, 243;
  0, 0, 3, 20, 76, 242, 729;
  0, 0, 3, 17, 72, 237, 728, 2187;
  0, 0, 1, 17, 66, 232, 722, 2186, 6561;
		

Crossrefs

Row sums are 6^n: A000400.
Columns are A000244, A024023, A060188, A061981, A061982 twice, A061983 twice, etc.

Programs

  • Mathematica
    A[n_, k_]:= A[n, k]= If[n==0, Boole[k==0], A[n-1,k] +A[n-1,Floor[k/2]] +A[n-1, Floor[k/3]]];
    T[n_, k_]:= A[k, n-k];
    Table[A[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 18 2022 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if (n==0): return 0^k
        else: return A(n-1, k) + A(n-1, (k//2)) + A(n-1, (k//3))
    def T(n, k): return A(k, n-k)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2022

Formula

A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1.
T(n, k) = A(k, n-k).
Sum_{k=0..n} A(n, k) = A000400(n).
T(n, n) = A(n, 0) = A000244(n). - G. C. Greubel, Jun 18 2022

A385911 If n = 2^b*3^c, then a(n) = (-1)^b * binomial(b+c, b), else a(n) = 0, for n >= 1.

Original entry on oeis.org

1, -1, 1, 1, 0, -2, 0, -1, 1, 0, 0, 3, 0, 0, 0, 1, 0, -3, 0, 0, 0, 0, 0, -4, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0
Offset: 1

Views

Author

Paul D. Hanna, Jul 12 2025

Keywords

Comments

See comment by David Wasserman in related sequence A061984.
Triangle A385910 has g.f. A(x,y) where A(x,y) = A(x^3 + 3*x*y*A(x,y)^3, y) / A(x^2 + 2*x*y*A(x,y)^2, y).
a(n) = A385910(n+1, 1) for n >= 1.

Examples

			G.f. A(x) = x - x^2 + x^3 + x^4 - 2*x^6 - x^8 + x^9 + 3*x^12 + x^16 - 3*x^18 - 4*x^24 + x^27 - x^32 + 6*x^36 + 5*x^48 - 4*x^54 + x^64 - 10*x^72 + x^81 - 6*x^96 + ...
where A(x) equals the sum of the following series
A(x) = (x + x^3 + x^9 + x^27 + ... + x^(3^k) + ...)
  - (x^2 + 2*x^6 + 3*x^18 + 4*x^54 + ... + (k+1)*x^(2*3^k) + ...)
  + (x^4 + 3*x^12 + 6*x^36 + 10*x^108 + ... + C(2+k,k)*x^(2^2*3^k) + ...)
  - (x^8 + 4*x^24 + 10*x^72 + 20*x^216 + ... + C(3+k,k)*x^(2^3*3^k) + ...)
  + (x^16 + 5*x^48 + 15*x^144 + 35*x^432 + ... + C(4+k,k)*x^(2^4*3^k) + ...)
  + ... + (-1)^n * Sum_{k>=0} binomial(n+k,k) * x^(2^n*3^k) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(p2,p3); if(n<1,0, p2 = valuation(n,2); p3 = valuation(n,3);
    if(n/(2^p2*3^p3)>1,0, (-1)^p2 * binomial(p2 + p3, p2) ))}
    for(n=1,100,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (-1)^n * Sum_{k>=0} binomial(n+k,k) * x^(2^n*3^k).
(2) If n = 2^b*3^c, then a(n) = (-1)^b * binomial(b+c, b) else a(n) = 0, for n >= 1.
Showing 1-7 of 7 results.