cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A003586 3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 648, 729, 768, 864, 972, 1024, 1152, 1296, 1458, 1536, 1728, 1944, 2048, 2187, 2304, 2592, 2916, 3072, 3456, 3888
Offset: 1

Views

Author

Paul Zimmermann, Dec 11 1996

Keywords

Comments

This sequence is easily confused with A033845, which gives numbers of the form 2^i*3^j with i, j >= 1. Don't simply say "numbers of the form 2^i*3^j", but specify which sequence you mean. - N. J. A. Sloane, May 26 2024
These numbers were once called "harmonic numbers", see Lenstra links. - N. J. A. Sloane, Jul 03 2015
Successive numbers k such that phi(6k) = 2k. - Artur Jasinski, Nov 05 2008
Where record values greater than 1 occur in A088468: A160519(n) = A088468(a(n)). - Reinhard Zumkeller, May 16 2009
Also numbers that are divisible by neither 6k - 1 nor 6k + 1, for all k > 0. - Robert G. Wilson v, Oct 26 2010
Also numbers m such that the rooted tree with Matula-Goebel number m has m antichains. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. The vertices of a rooted tree can be regarded as a partially ordered set, where u<=v holds for two vertices u and v if and only if u lies on the unique path between v and the root. An antichain is a nonempty set of mutually incomparable vertices. Example: m=4 is in the sequence because the corresponding rooted tree is \/=ARB (R is the root) having 4 antichains (A, R, B, AB). - Emeric Deutsch, Jan 30 2012
A204455(3*a(n)) = 3, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
The number of terms less than or equal to n is Sum_{i=0..floor(log_2(n))} floor(log_3(n/2^i) + 1), or Sum_{i=0..floor(log_3(n))} floor(log_2(n/3^i) + 1), which requires fewer terms to compute. - Robert G. Wilson v, Aug 17 2012
Named 3-friables in French. - Michel Marcus, Jul 17 2013
In the 14th century Levi Ben Gerson proved that the only pairs of terms which differ by 1 are (1,2), (2,3), (3,4), and (8,9); see A235365, A235366, A236210. - Jonathan Sondow, Jan 20 2014
Range of values of A000005(n) (and also A181819(n)) for cubefree numbers n. - Matthew Vandermast, May 14 2014
A036561 is a permutation of this sequence. - L. Edson Jeffery, Sep 22 2014
Also the sorted union of A000244 and A007694. - Lei Zhou, Apr 19 2017
The sum of the reciprocals of the 3-smooth numbers is equal to 3. Brief proof: 1 + 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + ... = (Sum_{k>=0} 1/2^k) * (Sum_{m>=0} 1/3^m) = (1/(1-1/2)) * (1/(1-1/3)) = (2/(2-1)) * (3/(3-1)) = 3. - Bernard Schott, Feb 19 2019
Also those integers k for which, for every prime p > 3, p^(2k) - 1 == 0 (mod 24k). - Federico Provvedi, May 23 2022
For n>1, the exponents’ parity {parity(i), parity(j)} of one out of four consecutive terms is {odd, odd}. Therefore, for n>1, at least one out of every four consecutive terms is a Zumkeller number (A083207). If for the term whose parity is {even, odd}, even also means nonzero, then this term is also a Zumkeller number (as is the case with the last of the four consecutive terms 1296, 1458, 1536, 1728). - Ivan N. Ianakiev, Jul 10 2022
Except the initial terms 2, 3, 4, 8, 9 and 16, these are numbers k such that k^6 divides 6^k. Except the initial terms 2, 3, 4, 6, 8, 9, 16, 18 and 27, these are numbers k such that k^12 divides 12^k. - Mohammed Yaseen, Jul 21 2022
In music theory, a comma is a ratio, close to 1 (typically less than 1.04), between two natural numbers divisible by only small primes (typically single digit). In this sequence, a(131) / a(130) = 531441 / 524288 ~ 1.013643 is the Pythagorean comma (A221363), the difference between 12 perfect fifths and 7 octaves. - Hal M. Switkay, Mar 23 2025

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 654 pp. 85, 287-8, Ellipses Paris 2004.
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.
  • R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.

Crossrefs

Cf. A051037, A002473, A051038, A080197, A080681, A080682, A117221, A105420, A062051, A117222, A117220, A090184, A131096, A131097, A186711, A186712, A186771, A088468, A061987, A080683 (p-smooth numbers with other values of p), A025613 (a subsequence).
Cf. also A000244, A007694. - Lei Zhou, Apr 19 2017
Cf. A191475 (successive values of i), A191476 (successive values of j), A022330 (indices of the pure terms 2^i), A022331 (indices of the pure terms 3^j). - N. J. A. Sloane, May 26 2024
Cf. A221363.

Programs

  • Haskell
    import Data.Set (Set, singleton, insert, deleteFindMin)
    smooth :: Set Integer -> [Integer]
    smooth s = x : smooth (insert (3*x) $ insert (2*x) s')
      where (x, s') = deleteFindMin s
    a003586_list = smooth (singleton 1)
    a003586 n = a003586_list !! (n-1)
    -- Reinhard Zumkeller, Dec 16 2010
    
  • Magma
    [n: n in [1..4000] | PrimeDivisors(n) subset [2,3]]; // Bruno Berselli, Sep 24 2012
  • Maple
    A003586 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do numtheory[factorset](a) minus {2,3} ; if % = {} then return a; end if; end do: end if; end proc: # R. J. Mathar, Feb 28 2011
    with(numtheory): for i from 1 to 23328 do if(i/phi(i)=3)then print(i/6) fi od; # Gary Detlefs, Jun 28 2011
  • Mathematica
    a[1] = 1; j = 1; k = 1; n = 100; For[k = 2, k <= n, k++, If[2*a[k - j] < 3^j, a[k] = 2*a[k - j], {a[k] = 3^j, j++}]]; Table[a[i], {i, 1, n}] (* Hai He (hai(AT)mathteach.net) and Gilbert Traub, Dec 28 2004 *)
    aa = {}; Do[If[EulerPhi[6 n] == 2 n, AppendTo[aa, n]], {n, 1, 1000}]; aa (* Artur Jasinski, Nov 05 2008 *)
    fQ[n_] := Union[ MemberQ[{1, 5}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 6]] == {False}; fQ[1] = True; Select[ Range@ 4000, fQ] (* Robert G. Wilson v, Oct 26 2010 *)
    powerOfTwo = 12; Select[Nest[Union@Join[#, 2*#, 3*#] &, {1}, powerOfTwo-1], # < 2^powerOfTwo &] (* Robert G. Wilson v and T. D. Noe, Mar 03 2011 *)
    fQ[n_] := n == 3 EulerPhi@ n; Select[6 Range@ 4000, fQ]/6 (* Robert G. Wilson v, Jul 08 2011 *)
    mx = 4000; Sort@ Flatten@ Table[2^i*3^j, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    f[n_] := Block[{p2, p3 = 3^Range[0, Floor@ Log[3, n] + 1]}, p2 = 2^Floor[Log[2, n/p3] + 1]; Min[ Select[ p2*p3, IntegerQ]]]; NestList[f, 1, 54] (* Robert G. Wilson v, Aug 22 2012 *)
    Select[Range@4000, Last@Map[First, FactorInteger@#] <= 3 &] (* Vincenzo Librandi, Aug 25 2016 *)
    Select[Range[4000],Max[FactorInteger[#][[All,1]]]<4&] (* Harvey P. Dale, Jan 11 2017 *)
  • PARI
    test(n)=for(p=2,3, while(n%p==0, n/=p)); n==1;
    for(n=1,4000,if(test(n),print1(n",")))
    
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim\1+.5)\log(3),N=3^n;while(N<=lim,listput(v,N);N<<=1));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • PARI
    is_A003586(n)=n<5||vecmax(factor(n,5)[, 1])<5 \\ M. F. Hasler, Jan 16 2015
    
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1,3), N=3^n; while(N<=lim, listput(v, N); N<<=1)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
    
  • Python
    from itertools import count, takewhile
    def aupto(lim):
        pows2 = list(takewhile(lambda x: xMichael S. Branicky, Jul 08 2022
    
  • Python
    from sympy import integer_log
    def A003586(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A003586gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(A003586gen(), 65))) # Michael S. Branicky, Sep 17 2024
    (C++) // Returns A003586 <= threshold without approximations nor sorting
    #include 
    std::forward_list A003586(const int threshold) {
        std::forward_list sequence;
        auto start_it = sequence.before_begin();
        for (int i = 1; i <= threshold; i *= 2) {
            for (int inc = 1; std::next(start_it) != sequence.end() && inc <= i; inc *= 3)
                ++start_it;
            auto it = start_it;
            for (int j = 1; i * j <= threshold; j *= 3) {
                sequence.emplace_after(it, i * j);
                for (int inc = 1; std::next(it) != sequence.end() && inc <= i; inc *= 2)
                    ++it;
            }
        }
        return sequence;
    } // Eben Gino Lester, Apr 17 2025
    
  • Sage
    def isA003586(n) :
        return not any(d != 2 and d != 3 for d in prime_divisors(n))
    @CachedFunction
    def A003586(n) :
        if n == 1 : return 1
        k = A003586(n-1) + 1
        while not isA003586(k) : k += 1
        return k
    [A003586(n) for n in (1..55)] # Peter Luschny, Jul 20 2012
    

Formula

An asymptotic formula for a(n) is roughly a(n) ~ 1/sqrt(6)*exp(sqrt(2*log(2)*log(3)*n)). - Benoit Cloitre, Nov 20 2001
A061987(n) = a(n + 1) - a(n), a(A084791(n)) = A084789(n), a(A084791(n) + 1) = A084790(n). - Reinhard Zumkeller, Jun 03 2003
Union of powers of 2 and 3 with n such that psi(n) = 2*n, where psi(n) = n*Product_(1 + 1/p) over all prime factors p of n = A001615(n). - Lekraj Beedassy, Sep 07 2004; corrected by Franklin T. Adams-Watters, Mar 19 2009
a(n) = 2^A022328(n)*3^A022329(n). - N. J. A. Sloane, Mar 19 2009
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} moebius(6*n)*x^n/(1 - x^n). - Paul D. Hanna, Sep 18 2011
a(n) = A007694(n+1)/2. - Lei Zhou, Apr 19 2017

Extensions

Deleted claim that this sequence is union of 2^n (A000079) and 3^n (A000244) sequences -- this does not include the terms which are not pure powers. - Walter Roscello (wroscello(AT)comcast.net), Nov 16 2008

A235366 Smallest odd prime factor of 3^n - 1.

Original entry on oeis.org

13, 5, 11, 7, 1093, 5, 13, 11, 23, 5, 797161, 547, 11, 5, 1871, 7, 1597, 5, 13, 23, 47, 5, 11, 398581, 13, 5, 59, 7, 683, 5, 13, 103, 11, 5, 13097927, 1597, 13, 5, 83, 7, 431, 5, 11, 47, 1223, 5, 491, 11, 13, 5, 107, 7, 11, 5, 13, 59, 14425532687, 5, 603901, 683, 13, 5, 11, 7, 221101, 5, 13, 11
Offset: 3

Views

Author

Jonathan Sondow, Jan 19 2014

Keywords

Comments

Levi Ben Gerson (1288-1344) proved that 3^n - 1 = 2^m has no solution in integers if n > 2, by showing that 3^n - l has an odd prime factor. His proof uses remainders after division of powers of 3 by 8 and powers of 2 by 8; see the Lenstra and Peterson links. For an elegant short proof, see the Franklin link. - Sondow
One way to prove it is by the use of congruences. The powers of 3, modulo 80, are 3, 9, 27, 1, 3, 9, 27, 1, 3, 9, 27, 1, ... The powers of 2 are 2, 4, 8, 16, 32, 64, 48, 16, 32, 64, 48, 16, ... - Alonso del Arte, Jan 20 2014

Examples

			3^3 - 1 = 26 = 2 * 13, so a(3) = 13.
3^4 - 1 = 80 = 2^4 * 5, so a(4) = 5.
3^5 - 1 = 242 = 2 * 11^2, so a(5) = 11.
		

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, NY 1992; see p. 731.

Crossrefs

See A235365 for 3^n + 1.
Cf. also A003586 (products 2^m * 3^n), A006899, A061987, A108906.

Programs

  • Mathematica
    Table[FactorInteger[3^n - 1][[2, 1]], {n, 3, 50}]
  • PARI
    a(n)=factor(3^n>>valuation(3^n-1,2))[1,1] \\ Charles R Greathouse IV, Jan 20 2014

Formula

a(4n) = 5 as 3^(4n)-1 = (3^4)^n-1 = 81^n-1 = (80+1)^n-1 == 0 (mod 5).
a(6+12n) = 7 as 3^(6+12n)-1 = (3^6)^(1+2n)-1 = 729^(1+2n)-1 = (728+1)^(1+2n)-1 == 1^(1+2n)-1 == 0 (mod 7), but 729^(1+2n)-1 = (730-1)^(1+2n)-1 == (-1)^(1+2n)-1 == -2 (mod 5).

A061984 a(n) = 1 + a([n/2]) + a([n/3]) with a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 6, 6, 7, 8, 8, 8, 11, 11, 11, 11, 12, 12, 15, 15, 15, 15, 15, 15, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 32, 32, 32, 32, 32, 32, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 37, 37, 47
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Comments

If n = 2^a*3^b, then a(n)-a(n-1) = C(a+b, a). - David Wasserman, Nov 17 2005

Crossrefs

Programs

  • Haskell
    a061984 n = a061984_list !! n
    a061984_list = 0 : map (+ 1) (zipWith (+)
       (map (a061984 . (`div` 2)) [1..]) (map (a061984 . (`div` 3)) [1..]))
    -- Reinhard Zumkeller, Jan 11 2014

A235365 Smallest odd prime factor of 3^n + 1, for n > 1.

Original entry on oeis.org

5, 7, 41, 61, 5, 547, 17, 7, 5, 67, 41, 398581, 5, 7, 21523361, 103, 5, 2851, 41, 7, 5, 23535794707, 17, 61, 5, 7, 41, 523, 5, 6883, 926510094425921, 7, 5, 61, 41, 18427, 5, 7, 17, 33703, 5, 82064241848634269407, 41, 7, 5, 16921, 76801, 547, 5, 7, 41, 78719947, 5, 61, 17, 7, 5, 3187, 41
Offset: 2

Views

Author

Jonathan Sondow, Jan 19 2014

Keywords

Comments

Levi Ben Gerson (1288-1344) proved that 3^n + 1 = 2^m has no solution in integers if n > 1, by showing that 3^n + l has an odd prime factor. His proof uses remainders after division of powers of 3 by 8 and powers of 2 by 8; see the Lenstra and Peterson links. For an elegant short proof, see the Franklin link.

Examples

			3^2 + 1 = 10 = 2*5, so a(2) = 5.
		

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, NY 1992; see p. 731.

Crossrefs

See A235366 for 3^n - 1.
Cf. also A003586 (products 2^m * 3^n), A006899, A061987, A108906.

Programs

  • Magma
    [PrimeDivisors(3^n +1)[2]: n in [2..60] ] ; // Vincenzo Librandi, Mar 16 2019
  • Mathematica
    Table[FactorInteger[3^n + 1][[2, 1]], {n, 2, 50}]

Formula

a(2+4n) = 5 as 3^(2+4n) + 1 = (3^2)*(3^4)^n + 1 = 9*81^n + 1 = 9*(80+1)^n + 1 == 9 + 1 == 0 (mod 5).
a(3+6n) = 7 as 3^(3+6n) + 1 = (3^3)*(3^6)^n + 1 = 27*729^n + 1 = 27*(728+1)^n + 1 == 27 + 1 == 0 (mod 7), but 27 * 729^n + 1 == 2*(-1)^n + 1 !== 0 (mod 5).

Extensions

Terms to a(132) in b-file from Vincenzo Librandi, Mar 16 2019
a(133)-a(658) in b-file from Amiram Eldar, Feb 05 2020
a(659)-a(768) in b-file from Max Alekseyev, Apr 27 2022

A061980 Square array A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1, read by antidiagonals.

Original entry on oeis.org

1, 0, 3, 0, 2, 9, 0, 1, 8, 27, 0, 0, 6, 26, 81, 0, 0, 4, 23, 80, 243, 0, 0, 3, 20, 76, 242, 729, 0, 0, 3, 17, 72, 237, 728, 2187, 0, 0, 1, 17, 66, 232, 722, 2186, 6561, 0, 0, 1, 11, 66, 222, 716, 2179, 6560, 19683, 0, 0, 1, 11, 54, 222, 701, 2172, 6552, 19682, 59049
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Examples

			Array begins as:
    1,   0,   0,   0,   0,   0,   0, ...;
    3,   2,   1,   0,   0,   0,   0, ...;
    9,   8,   6,   4,   3,   3,   1, ...;
   27,  26,  23,  20,  17,  17,  11, ...;
   81,  80,  76,  72,  66,  66,  54, ...;
  243, 242, 237, 232, 222, 222, 202, ...;
  729, 728, 722, 716, 701, 701, 671, ...;
Antidiagonal rows begin as:
  1;
  0, 3;
  0, 2, 9;
  0, 1, 8, 27;
  0, 0, 6, 26, 81;
  0, 0, 4, 23, 80, 243;
  0, 0, 3, 20, 76, 242, 729;
  0, 0, 3, 17, 72, 237, 728, 2187;
  0, 0, 1, 17, 66, 232, 722, 2186, 6561;
		

Crossrefs

Row sums are 6^n: A000400.
Columns are A000244, A024023, A060188, A061981, A061982 twice, A061983 twice, etc.

Programs

  • Mathematica
    A[n_, k_]:= A[n, k]= If[n==0, Boole[k==0], A[n-1,k] +A[n-1,Floor[k/2]] +A[n-1, Floor[k/3]]];
    T[n_, k_]:= A[k, n-k];
    Table[A[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 18 2022 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if (n==0): return 0^k
        else: return A(n-1, k) + A(n-1, (k//2)) + A(n-1, (k//3))
    def T(n, k): return A(k, n-k)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2022

Formula

A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1.
T(n, k) = A(k, n-k).
Sum_{k=0..n} A(n, k) = A000400(n).
T(n, n) = A(n, 0) = A000244(n). - G. C. Greubel, Jun 18 2022

A084788 Sizes of successive increasing gaps between 3-smooth numbers.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 15, 20, 30, 32, 36, 60, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 288, 324, 384, 432, 576, 648, 864, 1152, 1296, 1728, 2592, 3456, 5184, 10368, 11259, 13344, 15012, 17792, 20016, 22518, 26688, 30024, 40032, 45036, 53376
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 13; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; DeleteDuplicates @ FoldList[Max, Differences @ Union[s]] (* Amiram Eldar, Jan 30 2020 *)
    DeleteDuplicates[Differences[Select[Range[10^6],Max[FactorInteger[#][[All,1]]]<5&]],GreaterEqual] (* Harvey P. Dale, Nov 22 2022 *)

Formula

a(n) = A084790(n) - A084789(n).
a(n) = A061987(A084791(n)).

A084789 Increasing gaps between 3-smooth numbers (lower end).

Original entry on oeis.org

1, 4, 9, 12, 18, 36, 81, 108, 162, 256, 288, 324, 512, 576, 648, 768, 864, 1024, 1152, 1296, 1536, 1728, 2304, 2592, 3072, 3456, 4608, 5184, 6912, 9216, 10368, 13824, 20736, 27648, 41472, 82944, 165888, 196608, 221184, 262144, 294912, 331776
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 13; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; s = Union[s]; d = Differences @ s; v = DeleteDuplicates @ FoldList[Max, d]; Map[s[[First@ Position[d, #]]] &, v] //Flatten (* Amiram Eldar, Jan 30 2020 *)

Formula

a(n) = A084790(n) - A084788(n).
a(n) = A003586(A084791(n)).

A084790 Increasing gaps between 3-smooth numbers (upper end).

Original entry on oeis.org

2, 6, 12, 16, 24, 48, 96, 128, 192, 288, 324, 384, 576, 648, 729, 864, 972, 1152, 1296, 1458, 1728, 1944, 2592, 2916, 3456, 3888, 5184, 5832, 7776, 10368, 11664, 15552, 23328, 31104, 46656, 93312, 177147, 209952, 236196, 279936, 314928
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 13; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; s = Union[s]; d = Differences @ s; v = DeleteDuplicates @ FoldList[Max, d]; Map[s[[1 + First@ Position[d, #]]] &, v] //Flatten (* Amiram Eldar, Jan 30 2020 *)

Formula

a(n) = A084788(n) + A084789(n).
a(n) = A003586(A084791(n) + 1).

A084791 Where record gaps between 3-smooth numbers occur.

Original entry on oeis.org

1, 4, 7, 8, 10, 14, 19, 21, 24, 28, 29, 30, 34, 35, 36, 38, 39, 41, 42, 43, 45, 46, 50, 51, 53, 54, 58, 59, 63, 67, 68, 72, 78, 82, 88, 99, 110, 113, 115, 118, 120, 122, 125, 127, 133, 135, 138, 140, 146, 148, 154, 160, 162, 168, 175, 176, 177, 183, 190, 191, 192
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 13; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; s = Union[s]; d = Differences@s; v = DeleteDuplicates @ FoldList[Max, d]; Map[First@ Position[d, #] &, v] //Flatten (* Amiram Eldar, Jan 30 2020 *)
    Module[{nn=10^7,ts},ts=Select[Range[nn],Max[FactorInteger[#][[;;,1]]]<5&];DeleteDuplicates[Thread[{Range[Length[ts]-1],Differences[ts]}],GreaterEqual[#1[[2]],#2[[2]]]&]][[;;,1]] (* The program generates the first 58 terms of the sequence. *) (* Harvey P. Dale, Aug 11 2025 *)

Formula

A084788(n) = A061987(a(n)).
A084789(n) = A003586(a(n)).
A084790(n) = A003586(a(n) + 1).

A186711 Greatest common divisor of the n-th and (n+1)st 3-smooth numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 2, 6, 3, 1, 4, 12, 6, 2, 8, 9, 3, 12, 4, 16, 18, 6, 24, 27, 1, 32, 36, 12, 48, 54, 2, 64, 72, 81, 3, 96, 108, 4, 128, 144, 162, 6, 192, 216, 8, 1, 9, 288, 324, 12, 384, 432, 16, 2, 18, 576, 648, 24, 3, 27, 864, 32, 4, 36, 1152, 1296, 48, 6, 54, 1728, 64, 8, 72, 9, 81, 2592, 96, 12
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2011

Keywords

Comments

A186712 shows where this function and the 3-smooth numbers A003586 are in the same range: a(A186712(n)) = A003586(n) and a(m) != A003586(n) for m < A186712(n).

Crossrefs

Programs

  • Haskell
    a186711 n = a186711_list !! (n-1)
    a186711_list = zipWith gcd a003586_list $ tail a003586_list
  • Maple
    A186711 := proc(n) igcd(A003586(n),A003586(n+1)) ; end proc: # R. J. Mathar, Feb 28 2011
  • Mathematica
    S3 = Select[Range[3*10^4], FactorInteger[#][[-1, 1]] <= 3&]; Table[GCD[ S3[[n]], S3[[n+1]] ], {n, 1, Length[S3]-1}] (* Jean-François Alcover, Feb 02 2018 *)

Formula

a(n) = A050873(A003586(n+1), A003586(n)).
a(A186771(n)) = 1.
Showing 1-10 of 15 results. Next