cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A325709 Replace k with k! in the prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 13, 6, 89, 8, 9, 26, 659, 12, 5443, 178, 39, 16, 49033, 18, 484037, 52, 267, 1318, 5222429, 24, 169, 10886, 27, 356, 61194647, 78, 774825383, 32, 1977, 98066, 1157, 36, 10552185239, 968074, 16329, 104, 153903050137, 534, 2394322471421, 2636, 117
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

The union is A308299.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}
       2: {1}
       3: {2}
       4: {1,1}
      13: {6}
       6: {1,2}
      89: {24}
       8: {1,1,1}
       9: {2,2}
      26: {1,6}
     659: {120}
      12: {1,1,2}
    5443: {720}
     178: {1,24}
      39: {2,6}
      16: {1,1,1,1}
   49033: {5040}
      18: {1,2,2}
  484037: {40320}
      52: {1,1,6}.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]!),{n,20}]
  • PARI
    A325709(n) = { my(f=factor(n)); prod(i=1,#f~,prime(primepi(f[i, 1])!)^f[i, 2]); }; \\ Antti Karttunen, Nov 17 2019
    
  • Python
    from math import prod, factorial
    from sympy import prime, primepi, factorint
    def A325709(n): return prod(prime(factorial(primepi(p)))**e for p, e in factorint(n).items()) # Chai Wah Wu, Dec 26 2022

Formula

Completely multiplicative with a(prime(n)) = prime(n!).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(k!)) = 3.292606708493... . - Amiram Eldar, Dec 09 2022

Extensions

Keyword:mult added by Antti Karttunen, Nov 17 2019

A261997 a(n) = prime(n)! - prime(n!).

Original entry on oeis.org

0, 3, 107, 4951, 39916141, 6227015357, 355687428046967, 121645100408347963, 25852016738884971417571, 8841761993739701954543554805353, 8222838654177922817725562105174617
Offset: 1

Views

Author

Altug Alkan, Sep 08 2015

Keywords

Comments

a(n) is prime for n = 2, 3, 4, 5, 7.

Examples

			For n=2, a(n) = prime(n)! - prime(n!) = prime(2)! - prime(2!) = 3.
		

Crossrefs

Programs

  • Mathematica
    Array[Prime[#]! - Prime[#!] &, {11}] (* Michael De Vlieger, Sep 08 2015 *)
  • PARI
    vector(11, n, prime(n)! - prime(n!))

Formula

a(n) = A039716(n) - A062439(n).
log a(n) ~ n log^2 n. - Charles R Greathouse IV, Sep 08 2015

A308299 Numbers whose prime indices are factorial numbers.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 24, 26, 27, 32, 36, 39, 48, 52, 54, 64, 72, 78, 81, 89, 96, 104, 108, 117, 128, 144, 156, 162, 169, 178, 192, 208, 216, 234, 243, 256, 267, 288, 312, 324, 338, 351, 356, 384, 416, 432, 468, 486, 507, 512, 534, 576, 624, 648
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions using factorial numbers. The enumeration of these partitions by sum is given by A064986.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   12: {1,1,2}
   13: {6}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   26: {1,6}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   39: {2,6}
   48: {1,1,1,1,2}
   52: {1,1,6}
   54: {1,2,2,2}
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    facts=Array[Factorial,nn];
    Select[Range[Prime[Max@@facts]],SubsetQ[facts,PrimePi/@First/@FactorInteger[#]]&]

Formula

Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(k!)) = 3.292606708493... . - Amiram Eldar, Dec 03 2022

A075489 a(n) = prime((n+1)!) - prime(n!).

Original entry on oeis.org

1, 10, 76, 570, 4784, 43590, 435004, 4738392, 55972218, 713630736, 9777359856, 143350864898, 2240419421284, 37194276947898, 653800845663788, 12132997533521320, 237076055569553246, 4865738414759433466, 104661156692004606078, 2354571975178917773640
Offset: 1

Views

Author

Labos Elemer, Sep 26 2002

Keywords

Examples

			n=5: a(5) = prime(720) - prime(120) = 5443 - 659 = 4784.
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[(n + 1)! ] - Prime[n! ], {n, 1, 10}] (* Stefan Steinerberger, Apr 10 2006 *)
    #[[2]]-#[[1]]&/@Partition[Prime/@(Range[15]!),2,1](* Harvey P. Dale, Jul 07 2019 *)

Formula

a(n) = A062439(n+1) - A062439(n). - Jinyuan Wang, Jun 27 2020

Extensions

Definition corrected by Stefan Steinerberger, Apr 10 2006
a(15)-a(18) from Giovanni Resta, Jul 08 2019
a(19)-a(20) from Jinyuan Wang, Jun 27 2020

A076232 a(n) = prime(1+n!) - prime(n!).

Original entry on oeis.org

1, 2, 4, 8, 2, 6, 4, 24, 18, 86, 54, 18, 22, 48, 12, 10, 56, 10, 8, 12, 24
Offset: 1

Views

Author

Labos Elemer, Oct 03 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Prime[n! + 1] - Prime[n!], {n, 10}] (* Wesley Ivan Hurt, Aug 24 2019 *)
  • PARI
    a(n) = prime(1+n!) - prime(n!); \\ Michel Marcus, Aug 24 2019
    
  • PARI
    a(n) = my(p=prime(n!)); nextprime(p+1) - p; \\ Michel Marcus, Aug 24 2019

Formula

a(n) = A001223(n!). - Michel Marcus, Aug 24 2019

Extensions

a(16)-a(21) from Michel Marcus, Aug 24 2019

A262185 a(n) = n^prime(n!) - prime(n!)^n.

Original entry on oeis.org

-1, -1, -1, 1592126, 383123885216472214589586756787577295904684780483158303
Offset: 0

Views

Author

Altug Alkan, Sep 14 2015

Keywords

Comments

Inspired by A007965.

Examples

			For n = 1, a(n) = n^prime(n!) - prime(n!)^n = 1^2 - 2^1 = -1.
		

Crossrefs

Programs

  • Magma
    [n^NthPrime(Factorial(n)) - NthPrime(Factorial(n))^n: n in [0..6]]; // Vincenzo Librandi, Sep 15 2015
  • Mathematica
    Table[n^Prime[n!] - Prime[n!]^n, {n, 0, 4}] (* Michael De Vlieger, Sep 14 2015 *)
  • PARI
    a(n) = n^prime(n!) - prime(n!)^n;
    vector (6, n, a(n-1))
    

Formula

a(n) = n^A062439(n) - A062439(n)^n.

A262398 a(n) = prime(n)! mod prime(n!).

Original entry on oeis.org

0, 0, 3, 56, 511, 194, 46976, 104633, 546681, 41130177, 643108140, 7034542959, 65748733699, 1518781632657, 35097481516962, 396029533782911, 4146710666095789, 159899356955923308, 3662069108121609141, 109629928744379590001, 828180977946159463007
Offset: 1

Views

Author

Altug Alkan, Sep 21 2015

Keywords

Comments

Inspired by A261997.
a(n) = n and a(n) = prime(n-1) for n=3.
a(n) = 0 only for n=1 and n=2. What is the minimum value of a(n) for n > 2? Is there a possibility of observing that a(n) = 1 or a(n) = 2?

Examples

			a(1) = prime(1)! mod prime(1!) = 2 mod 2 = 0.
a(2) = prime(2)! mod prime(2!) = 6 mod 3 = 0.
a(3) = prime(3)! mod prime(3!) = 120 mod 13 = 3.
		

Crossrefs

Programs

  • Magma
    [Factorial(NthPrime(n)) mod NthPrime(Factorial(n)): n in [1..11]]; // Vincenzo Librandi, Sep 23 2015
  • Mathematica
    Table[Mod[Prime[n]!, Prime[n!]], {n, 15}] (* Michael De Vlieger, Sep 21 2015 *)
  • PARI
    a(n) = prime(n)! % prime(n!);
    vector(11, n, a(n))
    

Formula

a(n) = A039716(n) mod A062439(n).

Extensions

a(11)-a(15) from Michael De Vlieger, Sep 21 2015

A362056 Prime numbers of the form prime(k)! - prime(k!).

Original entry on oeis.org

3, 107, 4951, 39916141, 355687428046967
Offset: 1

Views

Author

Michael S. Branicky, Apr 06 2023

Keywords

Comments

No other terms < prime(22)! - prime(22!) (using A062439).
Problem suggested by Carlos Rivera as a follow-on to Puzzle 1127 (see links).

Examples

			prime(2)! - prime(2!) = 3 is prime.
prime(3)! - prime(3!) = 107 is prime.
prime(4)! - prime(4!) = 4951 is prime.
prime(5)! - prime(5!) = 39916141 is prime.
prime(7)! - prime(7!) = 355687428046967 is prime.
		

Crossrefs

Prime terms in A261997.

Formula

Showing 1-8 of 8 results.