cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A100363 Numbers n such that the numbers of divisors of n,n+1 and n+2 are k,2k,4k respectively for some k.

Original entry on oeis.org

193, 397, 454, 457, 613, 614, 661, 757, 758, 997, 998, 1093, 1237, 1238, 1453, 1478, 1657, 1681, 1766, 2137, 2341, 2413, 2455, 2593, 2917, 2918, 2942, 2966, 3217, 3334, 3494, 3589, 4021, 4177, 4183, 4406, 4621, 5143, 5233, 5965, 6121, 6133, 6134, 6193
Offset: 1

Views

Author

Labos Elemer, Nov 19 2004

Keywords

Examples

			n=193,195,195 have 2,4,8 divisors.
		

Crossrefs

Programs

A100364 Numbers n such that the numbers of divisors of n,n+1,n+2 and n+3 are k,2k,4k,8k respectively for some k.

Original entry on oeis.org

613, 757, 997, 1237, 2917, 6133, 9853, 15733, 19477, 22501, 24421, 25237, 26293, 26437, 28117, 31477, 33301, 35317, 44101, 45061, 46357, 51637, 53077, 56701, 59221, 61653, 61717, 64381, 65917, 66853, 68583, 70501, 70887, 72901, 75133
Offset: 1

Views

Author

Labos Elemer, Nov 19 2004

Keywords

Examples

			n=613,614,615,616 have 2,4,8,16 divisors respectively.
		

Crossrefs

Programs

  • Mathematica
    d0[x_] :=DivisorSigma[0, x];ta={{0}}; Do[g=n;s=d0[n];s1=d0[n+1];s2=d0[n+2];s3=d0[n+3] If[Equal[s1, 2*s]&&Equal[s2, 4*s]&&Equal[s3, 8*s], ta=Append[ta, n]; Print[{n, s, s1, s2, s3}]], {n, 1, 1000000}];{ta=Delete[ta, 1], g}
    nd2Q[{a_,b_,c_,d_}]:={b,c,d}/a=={2,4,8}; Position[Partition[ DivisorSigma[ 0,Range[80000]],4,1],?(nd2Q[#]&)]//Flatten (* _Harvey P. Dale, Feb 25 2020 *)

A340159 a(n) is the smallest number m such that numbers m, m + 1, m + 2, ..., m + n - 1 have k, 2*k, 3*k, ..., n*k divisors respectively.

Original entry on oeis.org

1, 1, 61, 421, 211082, 11238341, 16788951482, 41126483642
Offset: 1

Views

Author

Jaroslav Krizek, Dec 29 2020

Keywords

Comments

a(n) is the smallest number m such that tau(m) = tau(m + 1)/2 = tau(m + 2)/3 = tau(m + 3)/4 = ... = tau(m + n - 1)/n, where tau(k) = the number of divisors of k (A000005).
Corresponding values of tau(a(n)): 1, 1, 2, 2, 4, 4, 4, ...
a(8) <= 41126483642. - David A. Corneth, Dec 31 2020
Any subsequent terms are > 10^11. - Lucas A. Brown, Mar 18 2024

Examples

			a(3) = 61 because 61, 62 and 63 have 2, 4, and 6 divisors respectively and there is no smaller number having this property.
		

Crossrefs

Cf. A294528 for similar sequence with primes.

Programs

  • PARI
    isok(m, n) = {my(k=numdiv(m)); for (i=1, n-1, if (numdiv(m+i) != (i+1)*k, return (0));); return(1);}
    a(n) = my(m=1); while(!isok(m, n), m++); m; \\ Michel Marcus, Dec 30 2020
    
  • Python
    # see LINKS

Extensions

a(7) from Jinyuan Wang, Dec 31 2020
a(8) from Lucas A. Brown, Mar 18 2024

A063450 Numbers k such that d(k+1) < 2*d(k), where d() is the number of divisors function A000005.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Labos Elemer, Jul 24 2001

Keywords

Examples

			d(k+1) < 2*d(k) holds mainly for composites and for the primes 2 and 3. E.g.:
For k = 10: 2*d(10) = 2*4 = 8 > 2 = d(11).
For k = 3: 2*d(3) = 2*2 = 4 > d(4) = 3.
For k = 2: 2*d(2) = 2*2 = 4 > d(3) = 2.
		

Crossrefs

Programs

Extensions

Formatting by Charles R Greathouse IV, Mar 24 2010

A100365 Prime numbers q such that q, q+1, q+2, q+3, q+4 have 2, 4, 8, 16, 32 divisors respectively.

Original entry on oeis.org

1124581, 2101621, 2135701, 3829381, 5801701, 6097381, 6453541, 6535861, 6609781, 6799621, 6972661, 7055317, 7527061, 8281381, 8524981, 9412981, 9895141, 11455141, 11901781, 12043621, 12929941, 13749061, 14747701, 15504661
Offset: 1

Views

Author

Labos Elemer, Nov 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1002000]],DivisorSigma[0,Range[0,4]+#]=={2,4,8,16,32}&] (* Harvey P. Dale, Oct 04 2019 *)

A339778 Numbers m such that numbers m, m + 1 and m + 2 have k, 2k and 3k divisors respectively.

Original entry on oeis.org

61, 73, 277, 421, 458, 493, 583, 1234, 1393, 1418, 1658, 1909, 1954, 2066, 2138, 2234, 2329, 2386, 2533, 2594, 2773, 2797, 2846, 3013, 3073, 3265, 3394, 3841, 4322, 4333, 4538, 4586, 4633, 4717, 4754, 4766, 5029, 5223, 5245, 5342, 5378, 5554, 5893, 5906, 6169
Offset: 1

Views

Author

Jaroslav Krizek, Dec 16 2020

Keywords

Comments

Numbers m such that tau(m) = tau(m + 1) / 2 = tau(m + 2) / 3, where tau(k) = the number of divisors of k (A000005).
Corresponding values of tau(a(n)): 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, ...
Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), 2*tau(a(n)), 3*tau(a(n))]: [2, 4, 6], [2, 4, 6], [2, 4, 6], [2, 4, 6], [4, 8, 12], [4, 8, 12], [4, 8, 12], [4, 8, 12], [4, 8, 12], ...

Examples

			tau(61) = 2, tau(62) = 4, tau(63) = 6.
		

Crossrefs

Subsequence of A063446.

Programs

  • Magma
    [m: m in [1..10^5] | #Divisors(m) eq #Divisors(m + 1) / 2 and #Divisors(m) eq #Divisors(m + 2) / 3]
    
  • Mathematica
    Select[Range[6000], Equal @@ (DivisorSigma[0, # + {0, 1, 2}]/{1, 2, 3}) &] (* Amiram Eldar, Dec 16 2020 *)
  • PARI
    isok(m) = my(nb = numdiv(m)); (numdiv(m+1) == 2*nb) && (numdiv(m+2) == 3*nb); \\ Michel Marcus, Dec 18 2020

A340158 Numbers m such that m, m + 1, m + 2, m + 3 and m + 4 have k, 2k, 3k, 4k and 5k divisors respectively.

Original entry on oeis.org

211082, 2364062, 2774165, 3379802, 3743573, 4390682, 5651042, 5845442, 6708578, 7326122, 7371482, 8566394, 8839202, 9056282, 10154642, 10301333, 10325621, 10446242, 10540202, 11238341, 11719562, 11978762, 12377282, 12871058, 13456202, 16840058, 16954562, 17155141
Offset: 1

Views

Author

Jaroslav Krizek, Dec 29 2020

Keywords

Comments

Numbers m such that tau(m) = tau(m + 1)/2 = tau(m + 2)/3 = tau(m + 3)/4 = tau(m + 4)/5, where tau(k) = the number of divisors of k (A000005).
Quintuples of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2), tau(a(n) + 3), tau(a(n) + 4)] = [tau(a(n)), 2*tau(a(n)), 3*tau(a(n)), 4*tau(a(n)), 5*tau(a(n))]: [4, 8, 12, 16, 20], [4, 8, 12, 16, 20], [4, 8, 12, 16, 20], [8, 16, 24, 32, 40], [4, 8, 12, 16, 20], [4, 8, 12, 16, 20], ...
Corresponding values of numbers k: 4, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, ...
1524085621 is the smallest prime term (see A294528).
Subsequence of A063446, A339778 and A340157.

Examples

			tau(211082) = 4, tau(211083) = 8, tau(211084) = 12, tau(211085) = 16, tau(211086) = 20.
		

Crossrefs

Programs

  • Magma
    [m: m in [1..10^6] | #Divisors(m) eq #Divisors(m + 1)/2 and #Divisors(m) eq #Divisors(m + 2)/3 and #Divisors(m) eq #Divisors(m + 3)/4 and #Divisors(m) eq #Divisors(m + 4)/5]
    
  • Mathematica
    Select[Range[5*10^6], Equal @@ (DivisorSigma[0, # + {0, 1, 2, 3, 4}]/{1, 2, 3, 4, 5}) &] (* Amiram Eldar, Dec 30 2020 *)
  • PARI
    isok(m) = my(k = numdiv(m)); (numdiv(m+1) == 2*k) && (numdiv(m+2) == 3*k) && (numdiv(m+3) == 4*k) && (numdiv(m+4) == 5*k); \\ Michel Marcus, Jan 16 2021

A063449 Numbers k for which d(k+1) > 2*d(k), where d(j) = A000005(j).

Original entry on oeis.org

11, 17, 19, 23, 29, 31, 35, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 95, 97, 101, 103, 107, 109, 111, 113, 119, 125, 127, 131, 137, 139, 143, 149, 151, 155, 159, 161, 163, 167, 169, 173, 179, 181, 191, 197, 199, 203, 209, 211, 215, 219, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Labos Elemer, Jul 24 2001

Keywords

Comments

d(p+1) >= 2d(p) holds for all primes p and for some composite integers, as well.

Examples

			For k = 29: 2*d(29) = 2*2 = 4 < 8 = d(30).
For k = 95: 2*d(95) = 2*4 = 8 < 12 = d(96).
		

Crossrefs

Programs

Extensions

Edited by Jon E. Schoenfield, Sep 05 2017

A188540 Numbers k such that d(k+2) = 2*d(k) where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 13, 19, 22, 31, 37, 38, 53, 67, 83, 86, 89, 109, 113, 124, 127, 131, 133, 134, 139, 148, 157, 169, 181, 187, 199, 211, 233, 251, 253, 257, 263, 292, 293, 295, 307, 310, 317, 326, 328, 337, 338, 343, 353, 355, 361, 376, 379, 389, 401, 406, 409, 412, 422, 427, 438, 443, 449, 453
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 03 2011

Keywords

Examples

			1 is a term since d(1+2) = d(3) = 2 = 2*d(1).
		

Crossrefs

Programs

A340157 Numbers m such that numbers m, m + 1, m + 2 and m + 3 have k, 2k, 3k and 4k divisors respectively.

Original entry on oeis.org

421, 3013, 5029, 5223, 5245, 5893, 6487, 10533, 11911, 14677, 17173, 23077, 23573, 24613, 25141, 25213, 27637, 27973, 28357, 30661, 32407, 34117, 37477, 38282, 39751, 43495, 45973, 47365, 48423, 50821, 50965, 53413, 53989, 54421, 55141, 56103, 57877, 58165
Offset: 1

Views

Author

Jaroslav Krizek, Dec 29 2020

Keywords

Comments

Numbers m such that tau(m) = tau(m + 1)/2 = tau(m + 2)/3 = tau(m + 3)/4, where tau(k) = the number of divisors of k (A000005).
Quadruplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2), tau(a(n) + 3)] = [tau(a(n)), 2*tau(a(n)), 3*tau(a(n)), 4*tau(a(n))]: [2, 4, 6, 8], [4, 8, 12, 16], [4, 8, 12, 16], [4, 8, 12, 16], [4, 8, 12, 16], [4, 8, 12, 16], [4, 8, 12, 16], ...
Corresponding values of tau(a(n)): 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, ...
Subsequence of A063446 and A339778. Supersequence of A340158.
Prime terms (primes p such that p, p + 1, p + 2 and p + 3 have 2, 4, 6 and 8 divisors respectively): 421, 30661, 50821, 54421, 130021, 195541, 423781, 635461, 1003381, 1577941, 1597381, 1883941, ...

Examples

			tau(421) = 2, tau(422) = 4, tau(423) = 6, tau(424) = 8.
		

Crossrefs

Programs

  • Magma
    [m: m in [1..10^5] | #Divisors(m) eq #Divisors(m + 1)/2 and #Divisors(m) eq #Divisors(m + 2)/3 and #Divisors(m) eq #Divisors(m + 3)/4]
    
  • Mathematica
    Select[Range[60000], Equal @@ (DivisorSigma[0, # + {0, 1, 2, 3}]/{1, 2, 3, 4}) &] (* Amiram Eldar, Dec 30 2020 *)
  • PARI
    isok(m, n=4) = {my(k=numdiv(m)); for (i=1, n-1, if (numdiv(m+i) != (i+1)*k, return (0));); return(1);} \\ Michel Marcus, Dec 30 2020
Showing 1-10 of 13 results. Next